La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
F. Roux , A. Vignes
Rev. Phys. Appl. (Paris), 5 3 (1970) 393-405
Citations de cet article :
51 articles
Solute Drag Creep in Niobium Alloy C103 (Nb-10Hf-1Ti) at 1550 to 1750 °C
Thomas J. Bennett and Eric M. Taleff Metallurgical and Materials Transactions A 56 (1) 62 (2025) https://doi.org/10.1007/s11661-024-07617-z
Atomic mobilities, diffusion coefficients, and kinetic coefficients in Ti-rich Ti–Mo–Nb system
Weimin Chen, Lei Qu, Yongnan Xiong, Xing Luo and Fuxing Yin Calphad 84 102654 (2024) https://doi.org/10.1016/j.calphad.2023.102654
Effect of Mo Content on the Structural, Mechanical, and Tribological Properties of New Zr-Nb-Mo Alloys Obtained by Combining Powder Metallurgy and Vacuum Arc Melting Methods
Julia Zając, Izabela Matuła, Adrian Barylski, Krzysztof Aniołek, Marcin Nabiałek, Julia Flesińska and Grzegorz Dercz Materials 17 (14) 3483 (2024) https://doi.org/10.3390/ma17143483
Large-scale atomistic simulation of diffusion in refractory metals and alloys
Sergei Starikov, Petr Grigorev, Ralf Drautz and Sergiy V. Divinski Physical Review Materials 8 (4) (2024) https://doi.org/10.1103/PhysRevMaterials.8.043603
Diffusion coefficients and atomic mobilities in the BCC phase of the Al–Nb–V system
Karoline Elerbrock Borowski, Vitória de Melo Silveira, Nabil Chaia, Chuangye Wang, Ji-Cheng Zhao, Carlos Angelo Nunes and Gilberto Carvalho Coelho Calphad 85 102699 (2024) https://doi.org/10.1016/j.calphad.2024.102699
A simple yet general model of binary diffusion coefficients emerged from a comprehensive assessment of 18 binary systems
Wei Zhong, Qiaofu Zhang and Ji-Cheng Zhao Acta Materialia 215 117077 (2021) https://doi.org/10.1016/j.actamat.2021.117077
Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry
Weiwei Zhu, Cancan Zhao, Yiwen Zhang, et al. Acta Materialia 188 697 (2020) https://doi.org/10.1016/j.actamat.2020.02.039
Diffusion study in BCC Zr–Nb–Ti ternary alloys
Zhijie Yang, Weimin Bai, Ning Gao, Libin Liu and Ligang Zhang Calphad 70 101805 (2020) https://doi.org/10.1016/j.calphad.2020.101805
Nanorods and Nanocomposites
Hussein Shokrvash, Rahim Yazdani Rad, Abouzar Massoudi and Reza Shokrvash Nanorods and Nanocomposites (2020) https://doi.org/10.5772/intechopen.87930
Diffusivities and atomic mobilities in bcc Ti-Zr-Nb alloys
Weimin Bai, Yueyan Tian, Guanglong Xu, et al. Calphad 64 160 (2019) https://doi.org/10.1016/j.calphad.2018.12.003
Impurity diffusion coefficients in BCC Nb from first-principles calculations
Nan Zou, Hai-Jin Lu and Xiao-Gang Lu Journal of Alloys and Compounds 803 684 (2019) https://doi.org/10.1016/j.jallcom.2019.06.293
Diffusivities and atomic mobilities in bcc Ti Nb Ta alloys
Weimin Bai, Guanglong Xu, Zhijie Yang, Libin Liu, Ligang Zhang, Lijun Zeng and Di Wu Calphad 65 299 (2019) https://doi.org/10.1016/j.calphad.2019.03.012
Diffusion and atomic mobility of BCC Ti-Al-Nb alloys: Experimental determination and computational modeling
Yuanyu Gu, Fujun Fan, Yanhua Guo, et al. Calphad 62 83 (2018) https://doi.org/10.1016/j.calphad.2018.05.008
Interdiffusion and atomic mobility in bcc Ti–rich Ti–Nb–Zr system
Weimin Chen Calphad 60 98 (2018) https://doi.org/10.1016/j.calphad.2017.12.002
Interfacial characterization in ductile refractory metals reinforced MoSi2 based laminated composites
Manoj Kumar Jain, Jiten Das, Subrahmanyam J. and S. Ray International Journal of Refractory Metals and Hard Materials 66 258 (2017) https://doi.org/10.1016/j.ijrmhm.2017.04.003
Measurement of interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems using diffusion multiples
Lilong Zhu, Qiaofu Zhang, Zhangqi Chen, et al. Journal of Materials Science 52 (6) 3255 (2017) https://doi.org/10.1007/s10853-016-0614-0
Mobilities and diffusivities for bcc Nb–W, Nb–Ta, Zr–Mo and Zr–Hf alloys
Yajun Liu, Guan Wang, Jiang Wang and Zhitao Kang Journal of Alloys and Compounds 555 381 (2013) https://doi.org/10.1016/j.jallcom.2012.11.163
Diffusion characteristics and atomic mobilities for bcc refractory Mo–Ta, Mo–W, and Mo–Nb alloys
Yajun Liu, Zhaohui Long, Yong Du, et al. Calphad 36 110 (2012) https://doi.org/10.1016/j.calphad.2011.12.004
Interdiffusion in Nb-Mo, Nb-Ti and Nb-Zr Systems
Soma Prasad and Aloke Paul Defect and Diffusion Forum 323-325 491 (2012) https://doi.org/10.4028/www.scientific.net/DDF.323-325.491
Atomic mobilities and diffusional growth in solid phases of the V–Nb and V–Zr systems
Yajun Liu, Di Yu, Lijun Zhang and Yang Ge Calphad 33 (2) 425 (2009) https://doi.org/10.1016/j.calphad.2008.12.008
Diffusion Parameters in the Nb-Mo System: Revisited
S. Prasad and A. Paul Metallurgical and Materials Transactions A 40 (7) 1512 (2009) https://doi.org/10.1007/s11661-009-9861-x
Kinetic modeling of diffusion mobilities in bcc Ti–Nb alloys
Yajun Liu, Tongyan Pan, Lijun Zhang, Di Yu and Yang Ge Journal of Alloys and Compounds 476 (1-2) 429 (2009) https://doi.org/10.1016/j.jallcom.2008.09.019
Study of diffusion mobilities of Nb and Zr in bcc Nb–Zr alloys
Yajun Liu, Lijun Zhang, Tongyan Pan, Di Yu and Yang Ge Calphad 32 (3) 455 (2008) https://doi.org/10.1016/j.calphad.2008.06.008
Pergamon Materials Series
Gerhard Neumann and Cornelis Tuijn Pergamon Materials Series 14 215 (2008) https://doi.org/10.1016/S1470-1804(08)00005-9
(Im-)possible ISOL beams
U. Köster, P. Carbonez, A. Dorsival, et al. The European Physical Journal Special Topics 150 (1) 285 (2007) https://doi.org/10.1140/epjst/e2007-00326-1
Diffusion Processes in Advanced Technological Materials
Gyanendra P. Tiwari, Radhey S. Mehrotra and Yoshiaki Iijima Diffusion Processes in Advanced Technological Materials 69 (2005) https://doi.org/10.1016/B978-081551501-2.50004-6
Diffusion Processes in Advanced Technological Materials
Gyanendra P. Tiwari, Radhey S. Mehrotra and Yoshiaki Iijima Diffusion Processes in Advanced Technological Materials 69 (2005) https://doi.org/10.1007/978-3-540-27470-4_2
High temperature strength and room temperature fracture toughness of Nb–Mo–W refractory alloys with and without carbide dispersoids
Won-Yong Kim, Hisao Tanaka, Mok-Soon Kim and Shuji Hanada Materials Science and Engineering: A 346 (1-2) 65 (2003) https://doi.org/10.1016/S0921-5093(02)00515-4
Effect of W Alloying and NbC Dispersion on High Temperature Strength at 1773 K and Room Temperature Fracture Toughness in Nb5 Si3 /Nb In-situ Composites
Won-Yong Kim, Hisao Tanaka and Shuji Hanada MATERIALS TRANSACTIONS 43 (6) 1415 (2002) https://doi.org/10.2320/matertrans.43.1415
Effect of Cr Addition on Microstructure and Mechanical Properties in Nb-Si-Mo Base Multiphase Alloys
Won-Yong Kim, In-Dong Yeo, Mok-Soon Kim and Shuji Hanada MATERIALS TRANSACTIONS 43 (12) 3254 (2002) https://doi.org/10.2320/matertrans.43.3254
Growth of ordered lamellar precipitates during nitridation of Nb–10 at.% Ti at 1300°C
V. Buscaglia, A. Martinelli, C. Bottino and R. Musenich Journal of Alloys and Compounds 283 (1-2) 260 (1999) https://doi.org/10.1016/S0925-8388(98)00891-3
Solid solution hardening of Nb3Al alloys containing tungsten, molybdenum and tantalum
Y. Murayama and S. Hanada Scripta Materialia 37 (7) 949 (1997) https://doi.org/10.1016/S1359-6462(97)00190-5
Chemical diffusion in ZrNb system
R.V. Patil, G.B. Kale and S.P. Garg Journal of Nuclear Materials 223 (2) 169 (1995) https://doi.org/10.1016/0022-3115(95)00012-7
Interfacial modification of Nb/MoSi2 composites and its effects on fracture toughness
L. Xiao and R. Abbaschian Materials Science and Engineering: A 155 (1-2) 135 (1992) https://doi.org/10.1016/0921-5093(92)90321-Q
Self-diffusion in ZrAg alloys
R.V. Patil Journal of Nuclear Materials 187 (3) 197 (1992) https://doi.org/10.1016/0022-3115(92)90497-9
Smithells Metals Reference Book
Smithells Metals Reference Book 13-1 (1992) https://doi.org/10.1016/B978-0-08-051730-8.50018-2
Diffusion in Solid Metals and Alloys
A. D. LeClaire and G. Neumann Landolt-Börnstein - Group III Condensed Matter, Diffusion in Solid Metals and Alloys 26 112 (1990) https://doi.org/10.1007/10390457_34
Diffusion in Solid Metals and Alloys
A. D. LeClaire and G. Neumann Landolt-Börnstein - Group III Condensed Matter, Diffusion in Solid Metals and Alloys 26 166 (1990) https://doi.org/10.1007/10390457_45
Diffusion in Solid Metals and Alloys
A. D. LeClaire and G. Neumann Landolt-Börnstein - Group III Condensed Matter, Diffusion in Solid Metals and Alloys 26 203 (1990) https://doi.org/10.1007/10390457_48
The stable and metastable Ti-Nb phase diagrams
D. L. Moffat and U. R. Kattner Metallurgical Transactions A 19 (10) 2389 (1988) https://doi.org/10.1007/BF02645466
W Tungsten
Wolfgang Kurtz and Hans Vanecek W Tungsten 103 (1987) https://doi.org/10.1007/978-3-662-08690-2_17
Dehancement of impurity and self-diffusion in niobium by tungsten additions
J. N. Mundy, S. T. Ockers and L. C. Smedskjaer Physical Review B 33 (2) 847 (1986) https://doi.org/10.1103/PhysRevB.33.847
Thermodynamics of Point Defects and Their Relation with Bulk Properties
Defects in Solids, Thermodynamics of Point Defects and Their Relation with Bulk Properties 14 425 (1986) https://doi.org/10.1016/B978-0-444-86944-9.50021-6
Stability of zirconium oxides in Nb-Mo-ZrO2 alloy
A. N. Tyumentsev, A. D. Korotaev, Yu. P. Kolobov, et al. Soviet Physics Journal 25 (5) 447 (1982) https://doi.org/10.1007/BF00891770
Impurity diffusion and vacancy–impurity binding energy associated with elements of the second transition series in niobium and molybdenum
K. V. Sathyaraj, D. Ablitzer and C. Demangeat Philosophical Magazine A 40 (4) 541 (1979) https://doi.org/10.1080/01418617908234858
Diffusion of zirconium in niobium: The influence of fast diffusing impurities on the self-diffusion isotope effect
R. E. Einziger and J. N. Mundy Physical Review B 17 (2) 449 (1978) https://doi.org/10.1103/PhysRevB.17.449
Mechanism of diffusion of iron in niobium
D. Ablitzer and A. Vignes Journal of Nuclear Materials 69-70 97 (1978) https://doi.org/10.1016/0022-3115(78)90238-6
The evaporation and carburization behavior of coated systems of niobium on molybdenum and niobium on titanium
M. Miyake, T. Isshiki, H. Takeshita, Y. Yamamoto and T. Sano Thin Solid Films 40 149 (1977) https://doi.org/10.1016/0040-6090(77)90114-6
Diffusion of niobium, iron, cobalt, nickel and copper in niobium
Denis Ablitzee The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 35 (5) 1239 (1977) https://doi.org/10.1080/14786437708232950
Metals Reference Book
Metals Reference Book 860 (1976) https://doi.org/10.1016/B978-0-408-70627-8.50018-1
Diffusion in transition metals and alloys
V. Srikrishnan and P. J. Ficalora Metallurgical Transactions A 6 (11) 2095 (1975) https://doi.org/10.1007/BF03161836