La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J.P. Poirier
Rev. Phys. Appl. (Paris), 11 6 (1976) 731-738
Citations de cet article :
75 articles
Bruno Michel, Salomon ElBez and Mihail Garajeu (2025) https://doi.org/10.2139/ssrn.5160045
Bruno Michel, Salomon ElBez and Mihail Garajeu (2024) https://doi.org/10.2139/ssrn.4865632
Mechanical behavior and microstructural deformation mechanisms of Ti-6Al-4V helix springs under prolonged extreme cryogenic temperatures and constant loading
Jingwen Hu, Junwen Liu, Wei Xie, Yashun Wang, Chen Yang and Xun Chen Journal of Materials Research and Technology 32 739 (2024) https://doi.org/10.1016/j.jmrt.2024.07.187
New insights into physical origins of dynamic strain aging in Ti-2Al-2.5Zr alloy and influence on LCF and HCF behaviors
Jingtai Yu, Bingbing Li, Mengqi Li, Shengkun Wang, Xiang Guo, Jun Wu and Gang Chen Materials Science and Engineering: A 918 147483 (2024) https://doi.org/10.1016/j.msea.2024.147483
Multi-scale Crystal Viscoplasticity Approach for Estimating Anisotropic Steady-State Creep Properties of Single-Crystal SnAgCu Alloys
Q. Jiang, A. Deshpande and A. Dasgupta International Journal of Plasticity 153 103271 (2022) https://doi.org/10.1016/j.ijplas.2022.103271
Using Misorientation and Weighted Burgers Vector Statistics to Understand Intragranular Boundary Development and Grain Boundary Formation at High Temperatures
Sheng Fan, John Wheeler, David J. Prior, et al. Journal of Geophysical Research: Solid Earth 127 (8) (2022) https://doi.org/10.1029/2022JB024497
Analytic model of dislocation density evolution in fcc polycrystals accounting for dislocation generation, storage, and dynamic recovery mechanisms
Abigail Hunter and Dean L. Preston International Journal of Plasticity 151 103178 (2022) https://doi.org/10.1016/j.ijplas.2021.103178
Mechanical properties are affected by coalescence mechanisms during sintering of metal powders: Case study of Al-Cu nanoparticles by molecular dynamics simulation
A. Abedini, A. Montazeri, A. Malti and A. Kardani Powder Technology 405 117567 (2022) https://doi.org/10.1016/j.powtec.2022.117567
Anisotropic steady-state creep behavior of Single-crystal β-Sn: A continuum constitutive model based on crystal viscoplasticity
Q. Jiang and A. Dasgupta International Journal of Plasticity 140 102975 (2021) https://doi.org/10.1016/j.ijplas.2021.102975
A molecular dynamics-informed probabilistic cross-slip model in discrete dislocation dynamics
Alon Malka-Markovitz, Benoit Devincre and Dan Mordehai Scripta Materialia 190 7 (2021) https://doi.org/10.1016/j.scriptamat.2020.08.008
Lin Wang and Tomoo Katsura (2020) https://doi.org/10.1002/essoar.10501470.2
Analysis of Nanoprecipitation Effect on Toughness Behavior in Warm Worked AA7050 Alloy
Claudio Testani, Giuseppe Barbieri and Andrea Di Schino Metals 10 (12) 1693 (2020) https://doi.org/10.3390/met10121693
Dislocation Breakaway Damping in AA7050 Alloy
Andrea Di Schino, Roberto Montanari, Claudio Testani and Alessandra Varone Metals 10 (12) 1682 (2020) https://doi.org/10.3390/met10121682
Lin Wang and Tomoo Katsura (2020) https://doi.org/10.1002/essoar.10502991.1
Experimental and theoretical study on static recrystallization of a low-density ferritic steel containing 4 mass% aluminum
Xiangyu Xu, Jianzhe Li, Weijie Li, et al. Materials & Design 180 107924 (2019) https://doi.org/10.1016/j.matdes.2019.107924
Mechanism-based modeling of solute strengthening: Application to thermal creep in Zr alloy
Wei Wen, Laurent Capolungo and Carlos N. Tomé International Journal of Plasticity 106 88 (2018) https://doi.org/10.1016/j.ijplas.2018.03.003
Dislocations and Plastic Deformation in MgO Crystals: A Review
Jonathan Amodeo, Sébastien Merkel, Christophe Tromas, Philippe Carrez, Sandra Korte-Kerzel, Patrick Cordier and Jérôme Chevalier Crystals 8 (6) 240 (2018) https://doi.org/10.3390/cryst8060240
Hot deformation behaviour of Mg-3Al-3Sn and Mg-3Al-3Sn-1 Zn Alloys: Role of Zn
N.T.B.N. Koundinya, Lavanya Raman, Nandha Kumar E, Niraj Chawake and Ravi Sankar Kottada Materialia 3 274 (2018) https://doi.org/10.1016/j.mtla.2018.09.001
Modeling the climb-assisted glide of edge dislocations through a random distribution of nanosized vacancy clusters
Marie Landeiro Dos Reis, Laurent Proville and Maxime Sauzay Physical Review Materials 2 (9) (2018) https://doi.org/10.1103/PhysRevMaterials.2.093604
Mechanical and Creep Behavior of Advanced Materials
B. Kombaiah and K. Linga Murty The Minerals, Metals & Materials Series, Mechanical and Creep Behavior of Advanced Materials 65 (2017) https://doi.org/10.1007/978-3-319-51097-2_6
Dislocation cross-slip in fcc solid solution alloys
Wolfram Georg Nöhring and W.A. Curtin Acta Materialia 128 135 (2017) https://doi.org/10.1016/j.actamat.2017.02.027
Microstructural evolution of polycrystalline ice during confined creep testing
Daniel J. Breton, Ian Baker and David M. Cole Cold Regions Science and Technology 127 25 (2016) https://doi.org/10.1016/j.coldregions.2016.03.009
Multiscale modeling of the anisotropic transient creep response of heterogeneous single crystal SnAgCu solder
S. Mukherjee, B. Zhou, A. Dasgupta and T.R. Bieler International Journal of Plasticity 78 1 (2016) https://doi.org/10.1016/j.ijplas.2015.10.011
High temperature creep and deformation microstructures in recrystallized Zircaloy-4
B. Kombaiah and K. Linga Murty Philosophical Magazine 95 (15) 1656 (2015) https://doi.org/10.1080/14786435.2015.1042939
Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals
Ahmed M. Hussein, Satish I. Rao, Michael D. Uchic, Dennis M. Dimiduk and Jaafar A. El-Awady Acta Materialia 85 180 (2015) https://doi.org/10.1016/j.actamat.2014.10.067
Dislocation cross-slip controlled creep in Zircaloy-4 at high stresses
B. Kombaiah and K. Linga Murty Materials Science and Engineering: A 623 114 (2015) https://doi.org/10.1016/j.msea.2014.11.040
Modeling of Plastic Deformation of Crystalline Materials on the Basis of the Concept of Hardening and Recovery
V. A. Starenchenko, D. N. Cherepanov and O. V. Selivanikova Russian Physics Journal 57 (2) 139 (2014) https://doi.org/10.1007/s11182-014-0219-5
Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel
Haitao Zhao, Guoquan Liu and Lei Xu Materials Science and Engineering: A 559 262 (2013) https://doi.org/10.1016/j.msea.2012.08.095
Mervyn S. Paterson 107 (2013) https://doi.org/10.1007/978-94-007-5545-1_6
Ab initiocontinuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals
Benjamín R. Ramírez, Nasr Ghoniem and Giacomo Po Physical Review B 86 (9) (2012) https://doi.org/10.1103/PhysRevB.86.094115
Power-Law Creep from Discrete Dislocation Dynamics
Shyam M. Keralavarma, T. Cagin, A. Arsenlis and A. Amine Benzerga Physical Review Letters 109 (26) (2012) https://doi.org/10.1103/PhysRevLett.109.265504
The influence of stacking fault energy on high temperature creep behaviour laws: The case of Cu and Cu-4Si
M. Retima and H. Chadli Physics Procedia 2 (3) 1281 (2009) https://doi.org/10.1016/j.phpro.2009.11.092
Power-law and exponential creep in class M materials: discrepancies in experimental observations and implications for creep modeling
S.V. Raj Materials Science and Engineering: A 322 (1-2) 132 (2002) https://doi.org/10.1016/S0921-5093(01)01126-1
On the mechanism of dislocation creep of calcite at high temperature: Inferences from experimentally measured pressure sensitivity and strain rate sensitivity of flow stress
J. H. P. De Bresser Journal of Geophysical Research: Solid Earth 107 (B12) (2002) https://doi.org/10.1029/2002JB001812
The influence of dynamic recrystallization on the grain size distribution and rheological behaviour of Carrara marble deformed in axial compression
J. H. Ter Heege, J. H. P. De Bresser and C. J. Spiers Geological Society, London, Special Publications 200 (1) 331 (2002) https://doi.org/10.1144/GSL.SP.2001.200.01.19
Review of creep behaviour of AZ91 magnesium alloy produced by different technologies
S. Spigarelli, M. Regev, E. Evangelista and A. Rosen Materials Science and Technology 17 (6) 627 (2001) https://doi.org/10.1179/026708301101510483
Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy
S Spigarelli, M Cabibbo, E Evangelista, M Talianker and V Ezersky Materials Science and Engineering: A 289 (1-2) 172 (2000) https://doi.org/10.1016/S0921-5093(00)00911-4
Interpretation of constant-load and constant-stress creep behavior of a magnesium alloy produced by rapid solidification
S. Spigarelli, E. Cerri, E. Evangelista, L. Kloc and J. Čadek Materials Science and Engineering: A 254 (1-2) 90 (1998) https://doi.org/10.1016/S0921-5093(98)00754-0
Unified Constitutive Laws of Plastic Deformation
Gregory A. Henshall, Donald E. Helling and Alan K. Miller Unified Constitutive Laws of Plastic Deformation 153 (1996) https://doi.org/10.1016/B978-012425970-6/50005-9
The mechanical properties of single phase γ Ti47Al51Mn2 polycrystals
B. Viguier, J. Bonneville and J.L. Martin Acta Materialia 44 (11) 4403 (1996) https://doi.org/10.1016/1359-6454(96)00073-0
The Effect of Low-Angle and High-Angle Grain Boundaries on Elevated Temperature Strength
M. E. Kassner MRS Proceedings 362 (1994) https://doi.org/10.1557/PROC-362-157
Creep of PE-10 nickel-base superalloy at 973 K
A. J. Marzocca and A. C. Picasso Journal of Materials Science 29 (7) 1724 (1994) https://doi.org/10.1007/BF00351289
Role of small-angle (subgrain boundary) and large-angle (grain boundary) interfaces on 5- and 3-power-law creep
M.E. Kassner Materials Science and Engineering: A 166 (1-2) 81 (1993) https://doi.org/10.1016/0921-5093(93)90312-3
High‐temperature creep of olivine single crystals 1. Mechanical results for buffered samples
Q. Bai, S. J. Mackwell and D. L. Kohlstedt Journal of Geophysical Research: Solid Earth 96 (B2) 2441 (1991) https://doi.org/10.1029/90JB01723
Creep behavior of copper at intermediate temperatures—III. A comparison with theory
S.V. Raj and T.G. Langdon Acta Metallurgica et Materialia 39 (8) 1823 (1991) https://doi.org/10.1016/0956-7151(91)90151-P
Creep behavior of copper at intermediate temperatures—II. Surface microstructural observations
S.V. Raj and T.G. Langdon Acta Metallurgica et Materialia 39 (8) 1817 (1991) https://doi.org/10.1016/0956-7151(91)90150-Y
Creep of copper under constant structure conditions
G.S. Nakayama and J.C. Gibeling Scripta Metallurgica et Materialia 24 (11) 2031 (1990) https://doi.org/10.1016/0956-716X(90)90481-U
Simplifications and improvements in unified constitutive equations for creep and plasticity—I. Equations development
G.A. Henshall and A.K. Miller Acta Metallurgica et Materialia 38 (11) 2101 (1990) https://doi.org/10.1016/0956-7151(90)90077-T
High-temperature deformation of calcite single crystals by r
+
and f
+
slip
J. H. P. De Bresser and C. J. Spiers Geological Society, London, Special Publications 54 (1) 285 (1990) https://doi.org/10.1144/GSL.SP.1990.054.01.25
Creep behavior of copper at intermediate temperatures—I. Mechanical characteristics
S.V Raj and T.G Langdon Acta Metallurgica 37 (3) 843 (1989) https://doi.org/10.1016/0001-6160(89)90011-4
Some aspects of cross-slip mechanisms in metals and alloys
D. Caillard and J.L. Martin Journal de Physique 50 (18) 2455 (1989) https://doi.org/10.1051/jphys:0198900500180245500
Dislocations stopped by the Σ = 9 (122 ) grain boundary in Si. An HREM study of thermal activation
J. Thibault-Desseaux, J.L. Putaux, A. Bourret and H.O.K. Kirchner Journal de Physique 50 (18) 2525 (1989) https://doi.org/10.1051/jphys:0198900500180252500
The rate dependence and microstructure of high-purity silver deformed to large strains between 0.16 and 0.30T
m
M. E. Kassner Metallurgical Transactions A 20 (10) 2001 (1989) https://doi.org/10.1007/BF02650286
Rate controlling processes in creep of close packed metals at intermediate and high temperatures
J. Bonneville, D. Caillard, M. Carrard and J.L. Martin Revue de Physique Appliquée 23 (4) 461 (1988) https://doi.org/10.1051/rphysap:01988002304046100
High-strain steady-state flow in silver at ambient and near-ambient temperatures
M.E. Kassner and J.J. Oldani Scripta Metallurgica 22 (1) 41 (1988) https://doi.org/10.1016/S0036-9748(88)80303-X
New trends in creep microstructural models for pure metals
D. Caillard and J.L. Martin Revue de Physique Appliquée 22 (3) 169 (1987) https://doi.org/10.1051/rphysap:01987002203016900
Computer simulation experiments of the high temperature creep of pure metals
S. Patu, R.J. Arsenault and I.R. Kramer Materials Science and Engineering 78 (2) 145 (1986) https://doi.org/10.1016/0025-5416(86)90318-6
Mecanismes de fluage a haute temperature: influence de l'energie de faute d'empilement dans cu
M. Retima and M. Cornet Acta Metallurgica 34 (4) 753 (1986) https://doi.org/10.1016/0001-6160(86)90190-2
The effect of stacking fault energy on the creep power-law breakdown criterion in FCC metals
S.V. Raj Scripta Metallurgica 20 (10) 1333 (1986) https://doi.org/10.1016/0036-9748(86)90090-6
Time-dependent deformation of metals
W. D. Nix, J. C. Gibeling and D. A. Hughes Metallurgical Transactions A 16 (12) 2215 (1985) https://doi.org/10.1007/BF02670420
Microstructure of aluminium during creep at intermediate temperatures—III. The rate controlling process
D. Gaillard and J.L. Martin Acta Metallurgica 31 (5) 813 (1983) https://doi.org/10.1016/0001-6160(83)90097-4
Cross-slip in the high-temperature deformation of germanium, silicon and indium antimonide
Hans Siethoff Philosophical Magazine Part B 47 (5) 657 (1983) https://doi.org/10.1080/13642818308246467
Cross-slip in the high-temperature deformation of germanium, silicon and indium antimonide
Hans Siethoff Philosophical Magazine A 47 (5) 657 (1983) https://doi.org/10.1080/01418618308245256
On the nature and origin of Harper-Dorn creep
Farghalli A. Mohamed and Timothy J. Ginter Acta Metallurgica 30 (10) 1869 (1982) https://doi.org/10.1016/0001-6160(82)90027-X
Microstructure of aluminium during creep at intermediate temperature—I. dislocation networks after creep
D. Caillard and J.L. Martin Acta Metallurgica 30 (2) 437 (1982) https://doi.org/10.1016/0001-6160(82)90224-3
Fluage haute temperature du sesquioxyde d'yttrium: Y2O3
R. J. Gaboriaud Philosophical Magazine A 44 (3) 561 (1981) https://doi.org/10.1080/01418618108236162
Deformation mechanisms in h.c.p. metals at elevated temperatures—I. Creep behavior of magnesium
Suresh S. Vagarali and Terence G. Langdon Acta Metallurgica 29 (12) 1969 (1981) https://doi.org/10.1016/0001-6160(81)90034-1
Creep, hot hardness and sintering in the adhesion of metals at high temperature
D. Maugis Wear 62 (2) 349 (1980) https://doi.org/10.1016/0043-1648(80)90179-9
Creep of the lamellar AlCuAl2 Composite. II. Stress and Temperature dependence
M. Ignat and F. Durand Physica Status Solidi (a) 51 (2) 567 (1979) https://doi.org/10.1002/pssa.2210510231
Reply to Diffusion-controlled dislocation creep: A defense
J.P. Poirier Acta Metallurgica 27 (3) 401 (1979) https://doi.org/10.1016/0001-6160(79)90032-4
Diffusion-controlled dislocation creep: a defense
O.D. Sherby and J. Weertman Acta Metallurgica 27 (3) 387 (1979) https://doi.org/10.1016/0001-6160(79)90031-2
High temperature deformation of rocks and minerals
J. A. Tullis Reviews of Geophysics 17 (6) 1137 (1979) https://doi.org/10.1029/RG017i006p01137
Is power-law creep diffusion-controlled?
J.P. Poirier Acta Metallurgica 26 (4) 629 (1978) https://doi.org/10.1016/0001-6160(78)90115-3
Splitting of dislocations in olivine, cross-slip-controlled creep and mantle rheology
J.P. Poirier and B. Vergobbi Physics of the Earth and Planetary Interiors 16 (4) 370 (1978) https://doi.org/10.1016/0031-9201(78)90075-4
Microscopic creep models and the interpretation of stress-drop tests during creep
J.P. Poirier Acta Metallurgica 25 (8) 913 (1977) https://doi.org/10.1016/0001-6160(77)90178-X