La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Ion-optical design of a novel compact low-energy radiocarbon positive ion mass spectrometry
Guofa Wang, Huanfeng Hao, Peiyan Yu, Danhao Wang, Zhenfei Shen, Rong Guo and Pei Qiao Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1078 170652 (2025) https://doi.org/10.1016/j.nima.2025.170652
Nuclear Physics Mid Term Plan at LNGS
R. Buompane, F. Cavanna, C. Curceanu, A. D’Onofrio, A. Di Leva, A. Formicola, L. Gialanella, C. Gustavino, G. Imbriani, M. Junker, A. Marcianò, F. Marzaioli, R. Nania, F. Napolitano, K. Piscicchia, O. Straniero, C. Abia, M. Aliotta, D. Bemmerer, A. Best, A. Boeltzig, C. Bruno, A. Caciolli, A. Chieffi, G. Ciani, et al. The European Physical Journal Plus 139(3) (2024) https://doi.org/10.1140/epjp/s13360-023-04840-2
New progress of a 2.45 GHz ECR ion source for carbon positive ion mass spectrometry
Walter Kutschera Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 538 87 (2023) https://doi.org/10.1016/j.nimb.2023.02.016
Accelerator mass spectrometry: an analytical tool with applications for a sustainable society
Walter Kutschera Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 526 36 (2022) https://doi.org/10.1016/j.nimb.2022.05.008
Radiocarbon Dating of Marine Samples: Methodological Aspects, Applications and Case Studies
Accelerator mass spectrometry: a remarkable week in May 1977
K.H. Purser and A.E. Litherland Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 479 254 (2020) https://doi.org/10.1016/j.nimb.2020.03.012
Identification and Quantification of Drugs, Metabolites, Drug Metabolizing Enzymes, and Transporters
John S. Vogel Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361 156 (2015) https://doi.org/10.1016/j.nimb.2015.02.062
The André E. Lalonde AMS Laboratory – The new accelerator mass spectrometry facility at the University of Ottawa
W.E. Kieser, X.-L. Zhao, I.D. Clark, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361 110 (2015) https://doi.org/10.1016/j.nimb.2015.03.014
Mass spectrometric detection of radiocarbon for dating applications
H.-A. Synal, T. Schulze-König, M. Seiler, M. Suter and L. Wacker Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294 349 (2013) https://doi.org/10.1016/j.nimb.2012.01.026
Charge state distribution studies of SrF3, MnF3 and CaF3 molecules using single and double stripping in a Tandem accelerator
Pankaj Kumar, G. Korschinek, S. Chopra, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269(18) 1986 (2011) https://doi.org/10.1016/j.nimb.2011.05.032
The absolute age of events in Earth and human history on the basis of radiocarbon dating
H.E. Gove, K.H. Purser and A.E. Litherland Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7-8) xvii (2010) https://doi.org/10.1016/j.nimb.2009.10.007
Developments in Radiocarbon Technologies: From the Libby Counter to Compound-Specific AMS Analyses
Isobar separation at low energy in accelerator mass spectrometry
J.P Doupé, A.E Litherland, I Tomski and X.-L Zhao Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223-224 323 (2004) https://doi.org/10.1016/j.nimb.2004.04.064
E/Q and ME/Q2 interference in the two models of 14C Tandetron systems: towards the 21st century
M.-J Nadeau, H.W Lee, A.E Litherland, K.H Purser and X.-L Zhao Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223-224 328 (2004) https://doi.org/10.1016/j.nimb.2004.04.065
Ion reactions for isobar separation in accelerator mass spectrometry
A.E. Litherland, I. Tomski and J.P. Doupé Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 204 720 (2003) https://doi.org/10.1016/S0168-583X(03)00492-0
R.B Schubank Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172(1-4) 288 (2000) https://doi.org/10.1016/S0168-583X(00)00358-X
Ken Allen, Oxford, Beijing and AMS
A.E Litherland Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172(1-4) 721 (2000) https://doi.org/10.1016/S0168-583X(00)00354-2
Progress in AMS research at Iso Trace
A.E Litherland, R.P Beukens, J.P Doupe, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172(1-4) 206 (2000) https://doi.org/10.1016/S0168-583X(00)00120-8
Low-level copper concentration measurements in silicon wafers using trace-element accelerator mass spectrometry
F. D. McDaniel, S. A. Datar, B. N. Guo, S. N. Renfrow, Z. Y. Zhao and J. M. Anthony Applied Physics Letters 72(23) 3008 (1998) https://doi.org/10.1063/1.121523
TEAMS depth profiles in semiconductors
S.A. Datar, S.N. Renfrow, B.N. Guo, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123(1-4) 571 (1997) https://doi.org/10.1016/S0168-583X(96)00703-3
Evidence for the formation of ions in ion - surface collisions
The charge state distributions of 0.5–2.9 MeV Be, Al, Cl, Ti and Ni ions measured after carbon foil stripping
A. Wiebert, B. Erlandsson, R. Hellborg, K. Stenström and G. Skog Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 114(1-2) 15 (1996) https://doi.org/10.1016/0168-583X(96)00146-2
Efficient negative-ion sources for tandem injection (invited)
W. T. Diamond, Y. Imahori, J. W. McKay, J. S. C. Wills and H. Schmeing Review of Scientific Instruments 67(3) 1404 (1996) https://doi.org/10.1063/1.1146648
Production of Group IIA atomic and molecular negative ion beams in a cesium-sputter negative ion source
D Calabrese, A.M Covington and J.S Thompson Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 379(2) 192 (1996) https://doi.org/10.1016/0168-9002(96)00641-9
Accelerator mass spectrometry, large and small
L.K Fifield Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 382(1-2) 292 (1996) https://doi.org/10.1016/S0168-9002(96)00394-4
Depth profiling analysis of semiconductor materials by accelerator mass spectrometry
F.D. McDaniel, J.M. Anthony, S.N. Renfrow, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 99(1-4) 537 (1995) https://doi.org/10.1016/0168-583X(95)00204-9
Impurity determination in electronic materials by accelerator mass spectrometry
F.D. McDaniel, J.M. Anthony, J.F. Kirchhoff, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 89(1-4) 242 (1994) https://doi.org/10.1016/0168-583X(94)95181-0
Accelerator SIMS for trace element detection
M. Döbeli, P.W. Nebiker, M. Suter, H.A. Synal and D. Vetterli Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 85(1-4) 770 (1994) https://doi.org/10.1016/0168-583X(94)95921-8
Fabrication of silicon-based optical components for an ultraclean accelerator mass spectrometry negative ion source
J. F. Kirchhoff, D. K. Marble, D. L. Weathers, F. D. McDaniel, S. Matteson, J. M. Anthony, R. L. Beavers and T. J. Bennett Review of Scientific Instruments 65(5) 1570 (1994) https://doi.org/10.1063/1.1144893
Trace element analysis by accelerator mass spectrometry
F. D. McDaniel, S. Matteson, J. M. Anthony, et al. Journal of Radioanalytical and Nuclear Chemistry Articles 167(2) 423 (1993) https://doi.org/10.1007/BF02037200
Molecular ion stability and populations in tandem accelerator mass spectrometry
S. Matteson, D.L. Weathers, Y.D. Kim, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 64(1-4) 330 (1992) https://doi.org/10.1016/0168-583X(92)95489-E
Radionuclide dating and trace element analysis by accelerator mass spectrometry
F. D. McDaniel, S. Matteson, D. L. Weathers, et al. Journal of Radioanalytical and Nuclear Chemistry Articles 160(1) 119 (1992) https://doi.org/10.1007/BF02041663
Accelerator methods for the determination of beryllium
J.W. McMillan Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 66(1-2) 118 (1992) https://doi.org/10.1016/0168-583X(92)96145-O
Accelerator radiocarbon dating at the molecular level
Triply-ionized B2 molecules from a tandem accelerator
D.L. Weathers, F.D. McDaniel, S. Matteson, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 56-57 889 (1991) https://doi.org/10.1016/0168-583X(91)95054-H
Molecular-interference-free accelerator mass spectrometry
S. Matteson, D.K. Marble, L.S. Hodges, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 45(1-4) 575 (1990) https://doi.org/10.1016/0168-583X(90)90903-8
The University of North Texas atomic mass spectrometry facility for detection of impurities in electronic materials and metals
F.D. McDaniel, S. Malteson, D.L. Weathers, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 52(3-4) 310 (1990) https://doi.org/10.1016/0168-583X(90)90428-W
Accelerator mass spectrometry: A versatile tool for research
Walter Kutschera Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 50(1-4) 252 (1990) https://doi.org/10.1016/0168-583X(90)90364-Z
Applications of accelerator mass spectrometry to electronic materials
J.M. Anthony, S.E. Matteson, D.K. Marble, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 50(1-4) 262 (1990) https://doi.org/10.1016/0168-583X(90)90365-2
The negative ions of strontium and barium
M.A. Garwan, L.R. Kilius, A.E. Litherland, M-J. Nadeau and X-L. Zhao Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 52(3-4) 512 (1990) https://doi.org/10.1016/0168-583X(90)90468-A
A high-resolution electrostatic analyzer for accelerator mass spectrometry
S. Matteson, F.D. McDaniel, J.L. Duggan, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 759 (1989) https://doi.org/10.1016/0168-583X(89)90471-0
Accelerator mass spectrometry at the University of North Texas
J.M. Anthony, S. Matteson, F.D. McDaniel and J.L. Duggan Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 731 (1989) https://doi.org/10.1016/0168-583X(89)90465-5
Beschleuniger‐Massenspektrometrie — Isotopennachweis bei geringsten Konzentrationen
H.E. Gove, A.E. Litherland and K.H. Purser Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 29(1-2) 437 (1987) https://doi.org/10.1016/0168-583X(87)90278-3
Advances in accelerator mass spectrometry
W. Wölfli Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 29(1-2) 1 (1987) https://doi.org/10.1016/0168-583X(87)90193-5
Cosmogenic nuclides produced in situ in terrestrial solids
D. Lal Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 29(1-2) 238 (1987) https://doi.org/10.1016/0168-583X(87)90243-6
Fundamentals of accelerator mass spectrometry
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 323(1569) 5 (1987) https://doi.org/10.1098/rsta.1987.0069
Accelerator mass spectrometry and nuclear physics
Walter Kutschera Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 17(5-6) 377 (1986) https://doi.org/10.1016/0168-583X(86)90167-9
Secondary Ion Mass Spectrometry SIMS V
R. J. Blattner, J. C. Huneke, M. D. Strathman, et al. Springer Series in Chemical Physics, Secondary Ion Mass Spectrometry SIMS V 44 192 (1986) https://doi.org/10.1007/978-3-642-82724-2_49
Detection of semiconductor dopants using accelerator mass spectrometry
J.M. Anthony, D.J. Donahue, A.J.T. Jull and T.H. Zabel Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 498 (1985) https://doi.org/10.1016/0168-583X(85)90295-2
Dating of sediments using accelerator mass spectrometry
Accelerator mass spectrometry of 36Cl in limestone and some paleontological samples using completely stripped ions
P.W. Kubik, G. Korschinek, E. Nolte, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2) 326 (1984) https://doi.org/10.1016/0168-583X(84)90537-8
Accelerator mass spectrometry
A.E. Litherland Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2) 100 (1984) https://doi.org/10.1016/0168-583X(84)90491-9
The 12CH22+ molecule and radiocarbon dating by accelerator mass spectrometry
H.W. Lee, A. Galindo-Uribarri, K.H. Chang, L.R. Kilius and A.E. Litherland Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2) 208 (1984) https://doi.org/10.1016/0168-583X(84)90511-1
A comparative study of methods for thin-film and surface analysis