Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Experimental and Computational Approach to Fatigue Behavior of Polycrystalline Tantalum

Damien Colas, Eric Finot, Sylvain Flouriot, Samuel Forest, Matthieu Mazière and Thomas Paris
Metals 11 (3) 416 (2021)
https://doi.org/10.3390/met11030416

Thermodynamic entropy generation in the course of the fatigue crack initiation

V Ontiveros, M Amiri, A Kahirdeh and M Modarres
Fatigue & Fracture of Engineering Materials & Structures 40 (3) 423 (2017)
https://doi.org/10.1111/ffe.12506

Influence of cyclic stress amplitude on mechanisms of deformation of a high nitrogen austenitic stainless steel

C.W. Shao, F. Shi and X.W. Li
Materials Science and Engineering: A 667 208 (2016)
https://doi.org/10.1016/j.msea.2016.05.007

On the unified view of the contribution of plastic strain to cyclic crack initiation: Impact of the progressive transformation of shear bands to persistent slip bands

H.S. Ho, M. Risbet and X. Feaugas
Acta Materialia 85 155 (2015)
https://doi.org/10.1016/j.actamat.2014.11.020

Investigation and modeling of the anomalous yield point phenomenon in pure tantalum

D. Colas, E. Finot, S. Flouriot, et al.
Materials Science and Engineering: A 615 283 (2014)
https://doi.org/10.1016/j.msea.2014.07.028

X-ray diffraction study of microstructural changes during fatigue damage initiation in pipe steels: Role of the initial dislocation structure

B. Pinheiro, J. Lesage, I. Pasqualino, E. Bemporad and N. Benseddiq
Materials Science and Engineering: A 580 1 (2013)
https://doi.org/10.1016/j.msea.2013.05.042

X-ray diffraction study of microstructural changes during fatigue damage initiation in steel pipes

B. Pinheiro, J. Lesage, I. Pasqualino, N. Benseddiq and E. Bemporad
Materials Science and Engineering: A 532 158 (2012)
https://doi.org/10.1016/j.msea.2011.10.077

Adoucissement d'un superalliage base nickel sous-vieilli en fatigue oligocyclique

Véronique Ferney
Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329 (12) 843 (2001)
https://doi.org/10.1016/S1620-7742(01)01409-X

The use of UHP Ni and Ni Base Single Crystals to Study the Stress Corrosion Cracking Mechanisms of Alloy 600 in PWR Environment

T. Magnin, N. Renaudot and F. Foct
Materials Transactions, JIM 41 (1) 210 (2000)
https://doi.org/10.2320/matertrans1989.41.210

Mechanical behavior and damage kinetics in nodular cast iron: Part II. Hardening and damage

C. Guillemer-Neel, X. Feaugas and M. Clavel
Metallurgical and Materials Transactions A 31 (12) 3075 (2000)
https://doi.org/10.1007/s11661-000-0086-2

Materials Science and Technology: A Comprehensive Treatment

Thierry Magnin and Pierre Combrade
Materials Science and Technology: A Comprehensive Treatment 207 (2000)
https://doi.org/10.1002/9783527619306.ch5

Fatigue Damage Initiation in Waspaloy Under Complex Cyclic Loading

A. Abdul-Latif, V. Ferney and K. Saanouni
Journal of Engineering Materials and Technology 121 (3) 278 (1999)
https://doi.org/10.1115/1.2812376

Low cycle fatigue behaviour in vacuum of a 316L-type austenitic stainless steel between 20 and 600°C—Part II: Dislocation structure evolution and correlation with cyclic behaviour

M. Gerland, R. Alain, B. Ait Saadi and J. Mendez
Materials Science and Engineering: A 229 (1-2) 68 (1997)
https://doi.org/10.1016/S0921-5093(96)10560-8

Low cycle fatigue behavior in vacuum of a 316L type austenitic stainless steel between 20 and 600°C Part I: Fatigue resistance and cyclic behavior

R. Alain, P. Violan and J. Mendez
Materials Science and Engineering: A 229 (1-2) 87 (1997)
https://doi.org/10.1016/S0921-5093(96)10558-X

Cyclic stress-strain response and dislocation substructure evolution of a ferrite-austenite stainless steel

A. Mateo, L. Llanes, L. Iturgoyen and M. Anglada
Acta Materialia 44 (3) 1143 (1996)
https://doi.org/10.1016/1359-6454(95)00197-2

Low-cycle fatigue damage mechanisms of F.c.c. and B.c.c. polycrystals: Homologous behaviour?

T Magnin, C Ramade, J Lepinoux and L.P Kubin
Materials Science and Engineering: A 118 41 (1989)
https://doi.org/10.1016/0921-5093(89)90056-7

The influence of the mechanical test conditions on the corrosion fatigue behaviour of austenitic stainless steel in chloride solutions

T. Magnin, D. Desjardins and M. Puiggali
Corrosion Science 29 (5) 567 (1989)
https://doi.org/10.1016/0010-938X(89)90008-5

Cyclic deformation mechanisms of a two-phase stainless steel in various environmental conditions

T. Magnin and J.M. Lardon
Materials Science and Engineering: A 104 21 (1988)
https://doi.org/10.1016/0025-5416(88)90402-8

Experimental (TEM and STEM) investigation and theoretical approach to the fatigue-induced dissolution of δ′ precipitates in a 2.5 wt% Al-Li alloy

Y. Brechet, F. Louchet, C. Marchionni and J. L. Verger-Gaugry
Philosophical Magazine A 56 (3) 353 (1987)
https://doi.org/10.1080/01418618708214391

Mobilite des dislocations lors de la sollicitation cyclique de l'aluminium polycristallin

J. Chicois, R. Fougeres, G. Guichon, A. Hamel and A. Vincent
Acta Metallurgica 34 (11) 2157 (1986)
https://doi.org/10.1016/0001-6160(86)90161-6

Déformation cyclique in situ dans le microscope électronique à 200 kV. Présentation du porte-objet de fatigue

P. Lewandowski, M. Fagot, P. Chomel and J.P. Cottu
Revue de Physique Appliquée 20 (3) 207 (1985)
https://doi.org/10.1051/rphysap:01985002003020700