Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Low‐temperature failure mechanism of [001] niobium micropillars under uniaxial tension

Gyuho Song, Nicole K. Aragon, Ill Ryu and Seok‐Woo Lee
Journal of Materials Research 36 (12) 2371 (2021)
https://doi.org/10.1557/s43578-020-00069-2

Low-temperature failure mechanism of [001] niobium micropillars under uniaxial tension

Gyuho Song, Nicole K. Aragon, Ill Ryu and Seok-Woo Lee
Journal of Materials Research 1 (2020)
https://doi.org/10.1557/jmr.2020.252

Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes

Elena Spagnuolo, Oliver Plümper, Marie Violay, Andrea Cavallo and Giulio Di Toro
Scientific Reports 5 (1) (2015)
https://doi.org/10.1038/srep16112

The ductile–brittle transition for nominally pure polycrystalline nickel

S. Mahalingam, P.E.J. Flewitt and J.F. Knott
Materials Science and Engineering: A 564 342 (2013)
https://doi.org/10.1016/j.msea.2012.11.106

Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials

S. Wurster, N. Baluc, M. Battabyal, et al.
Journal of Nuclear Materials 442 (1-3) S181 (2013)
https://doi.org/10.1016/j.jnucmat.2013.02.074

Tungsten foil laminate for structural divertor applications – Basics and outlook

Jens Reiser, Michael Rieth, Bernhard Dafferner and Andreas Hoffmann
Journal of Nuclear Materials 423 (1-3) 1 (2012)
https://doi.org/10.1016/j.jnucmat.2012.01.010

Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

Jens Reiser, Michael Rieth, Bernhard Dafferner, et al.
Journal of Nuclear Materials 424 (1-3) 197 (2012)
https://doi.org/10.1016/j.jnucmat.2012.02.030

Testing continuum concepts for hydrogen embrittlement in metals using atomistics

J Song, M Soare and W A Curtin
Modelling and Simulation in Materials Science and Engineering 18 (4) 045003 (2010)
https://doi.org/10.1088/0965-0393/18/4/045003

Comment on the brittle-to-ductile transition: A cooperative dislocation generation instability; dislocation dynamics and the strain-rate dependence of the transition temperature

P.B. Hirsch and S.G. Roberts
Acta Materialia 44 (6) 2361 (1996)
https://doi.org/10.1016/1359-6454(95)00363-0

X-ray-diffraction investigation of the anodic oxidation of porous silicon

D. Buttard, D. Bellet and G. Dolino
Journal of Applied Physics 79 (10) 8060 (1996)
https://doi.org/10.1063/1.362360

Brittle-to-ductile transition studied by constant-rate indentation cracking

K. Maeda, H. Nishioka, N. Narita and S. Fujita
Materials Science and Engineering: A 176 (1-2) 121 (1994)
https://doi.org/10.1016/0921-5093(94)90965-2

Dislocation loops at crack tips: nucleation and growth— an experimental study in silicon

Amand George and Gérard Michot
Materials Science and Engineering: A 164 (1-2) 118 (1993)
https://doi.org/10.1016/0921-5093(93)90649-Y

Proceedings of The 7th International Conference On Fracture (ICF7)

P.B. HIRSCH, S.G. ROBERTS, J. SAMUELS and P.D. WARREN
Proceedings of The 7th International Conference On Fracture (ICF7) 139 (1989)
https://doi.org/10.1016/B978-0-08-034341-9.50026-7

In-Situ Hrem Observation of Low Temperature Fracture Near the Oxide Surface of Iron Doped Silicon

M.H. Rhee, J.C. Barry and W.A. Coghlan
MRS Proceedings 153 (1989)
https://doi.org/10.1557/PROC-153-109

The brittle-ductile transition in silicon. II. Interpretation

Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 421 (1860) 25 (1989)
https://doi.org/10.1098/rspa.1989.0002