Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Computational Characterization of Quantum‐Dot Light‐Emitting Diodes by Combinatorial Exciton Recombination Parameters and Photon Extraction Efficiency

Yoonwoo Kim, Jeong‐Wan Jo, Jiajie Yang, Yaron Bernstein, Sanghyo Lee, Sung‐Min Jung and Jong Min Kim
Advanced Optical Materials 12 (12) (2024)
https://doi.org/10.1002/adom.202302593

Multistate Ferroelectric Diodes with High Electroresistance Based on van der Waals Heterostructures

Soumya Sarkar, Zirun Han, Maheera Abdul Ghani, Nives Strkalj, Jung Ho Kim, Yan Wang, Deep Jariwala and Manish Chhowalla
Nano Letters 24 (42) 13232 (2024)
https://doi.org/10.1021/acs.nanolett.4c03360

Conduction mechanisms in a planar nanocomposite resistive switching device based on cluster-assembled Au/ZrOx films

Davide Cipollini, Filippo Profumo, Lambert Schomaker, Paolo Milani and Francesca Borghi
Frontiers in Materials 11 (2024)
https://doi.org/10.3389/fmats.2024.1385792

High-field conduction in fresh and aged samples of Se and As2Se3 glasses

Shiv Kumar Pal, Neeraj Mehta, A. A. Horvat and V. I. Mikla
Journal of Materials Science: Materials in Electronics 33 (18) 15107 (2022)
https://doi.org/10.1007/s10854-022-08430-3

Charge transport features of CdTe-based X- and γ-ray detectors with Ti and TiOx Schottky contacts

Olena Maslyanchuk, Mykhailo Solovan, Viktor Brus, et al.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 988 164920 (2021)
https://doi.org/10.1016/j.nima.2020.164920

Conduction mechanisms in hydrogenated amorphous silicon carbide

Bernhard Leitl, Gerhard Schmidt, Gregor Pobegen, Peter Knoll and Heinz Krenn
Journal of Non-Crystalline Solids 528 119750 (2020)
https://doi.org/10.1016/j.jnoncrysol.2019.119750

Raman evidence for absence of phase transitions in negative differential resistance thin film devices of niobium dioxide

Ali Fakih, Onkar Shinde, Johan Biscaras and Abhay Shukla
Journal of Applied Physics 127 (8) (2020)
https://doi.org/10.1063/1.5140543

Poole–Frenkel Emission Saturation and Its Effects on Time-to-Failure in Ta-Ta2O5-MnO2 Capacitors

Q. F. Pan and Q. Liu
Advances in Materials Science and Engineering 2019 1 (2019)
https://doi.org/10.1155/2019/1690378

Barrier tuning of atomic layer deposited Ta2O5 and Al2O3 in double dielectric diodes

Ibrahim Nemr Noureddine, Naser Sedghi, Ivona Z. Mitrovic and Steve Hall
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35 (1) (2017)
https://doi.org/10.1116/1.4974219

Investigations of Electrical and Electro-Optical Properties of Liquid Crystal/Copolymer-Clay Nanostructured Systems

Doina Manaila Maximean, Constantin Rosu, Ligia Frunza, et al.
Molecular Crystals and Liquid Crystals 546 (1) 143/[1613] (2011)
https://doi.org/10.1080/15421406.2011.571946

Limitations of Poole–Frenkel Conduction in Bilayer $\hbox{HfO}_{2}/\hbox{SiO}_{2}$ MOS Devices

Richard G. Southwick, Justin Reed, Christopher Buu, et al.
IEEE Transactions on Device and Materials Reliability 10 (2) 201 (2010)
https://doi.org/10.1109/TDMR.2009.2039215

Dielectric breakdown and Poole–Frenkel field saturation in silicon oxynitride thin films

S. Habermehl and R. T. Apodaca
Applied Physics Letters 86 (7) (2005)
https://doi.org/10.1063/1.1865338

Prediction of dielectric reliability from I–V characteristics: Poole–Frenkel conduction mechanism leading to √E model for silicon nitride MIM capacitor

K.-H. Allers
Microelectronics Reliability 44 (3) 411 (2004)
https://doi.org/10.1016/j.microrel.2003.12.007

A unified explanation for gate current in n-MOS devices based on hot electrons and the Poole-Frenkel effect

W.R. Harrell and J. Frey
Microelectronic Engineering 22 (1-4) 281 (1993)
https://doi.org/10.1016/0167-9317(93)90174-4

The problem of deriving the field-induced thermal emission in Poole-Frenkel theories

R. Ongaro and A. Pillonnet
Radiation Effects and Defects in Solids 124 (3) 289 (1992)
https://doi.org/10.1080/10420159208220202