La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
M. Nisenoff
Rev. Phys. Appl. (Paris), 5 1 (1970) 21-24
Citations de cet article :
39 articles
Superconductivity
Superconductivity 373 (2016) https://doi.org/10.1002/9783527686513.ch7
Supraleitung
Supraleitung 381 (2012) https://doi.org/10.1002/9783527668670.ch7
SQUIDs: THEN AND NOW
John Clarke International Journal of Modern Physics B 24 (20n21) 3999 (2010) https://doi.org/10.1142/S0217979210056438
Superconductivity
Superconductivity 351 (2004) https://doi.org/10.1002/9783527618507.ch7
High Transition Temperature Superconducting Quantum Interference Devices: Basic Concepts, Fabrication and Applications
Dieter Koelle Journal of Electroceramics 3 (2) 195 (1999) https://doi.org/10.1023/A:1009903428803
High-transition-temperature superconducting quantum interference devices
D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker and John Clarke Reviews of Modern Physics 71 (3) 631 (1999) https://doi.org/10.1103/RevModPhys.71.631
SQUID Sensors: Fundamentals, Fabrication and Applications
John Clarke SQUID Sensors: Fundamentals, Fabrication and Applications 1 (1996) https://doi.org/10.1007/978-94-011-5674-5_1
A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux-locked loop and comparison with a conventional analog feedback scheme
P. J. Kung, R. R. Bracht, E. R. Flynn and P. S. Lewis Review of Scientific Instruments 67 (1) 222 (1996) https://doi.org/10.1063/1.1146575
The New Superconducting Electronics
John Clarke The New Superconducting Electronics 123 (1993) https://doi.org/10.1007/978-94-011-1918-4_5
Principles and applications of SQUIDs
J. Clarke Proceedings of the IEEE 77 (8) 1208 (1989) https://doi.org/10.1109/5.34120
Superconducting Electronics
John Clarke Superconducting Electronics 87 (1989) https://doi.org/10.1007/978-3-642-83885-9_5
SQUID magnetometers for low-frequency applications
Tapani Ryh�nen, Heikki Sepp�, Risto Ilmoniemi and Jukka Knuutila Journal of Low Temperature Physics 76 (5-6) 287 (1989) https://doi.org/10.1007/BF00681735
Progress in Low Temperature Physics
Risto Ilmoniemi, Jukka Knuutila, Tapani Ryhänen and Heikki Seppä Progress in Low Temperature Physics 12 271 (1989) https://doi.org/10.1016/S0079-6417(08)60044-X
Geophysics - Laboratory Measurements
M. Fuller Methods in Experimental Physics, Geophysics - Laboratory Measurements 24 303 (1987) https://doi.org/10.1016/S0076-695X(08)60590-6
Magnetite Biomineralization and Magnetoreception in Organisms
M. Fuller, W. S. Goree and W. L. Goodman Topics in Geobiology, Magnetite Biomineralization and Magnetoreception in Organisms 5 103 (1985) https://doi.org/10.1007/978-1-4613-0313-8_4
Biomagnetic instrumentation
Gian Luca Romani, Samuel J. Williamson and Lloyd Kaufman Review of Scientific Instruments 53 (12) 1815 (1982) https://doi.org/10.1063/1.1136907
Some remarks on the theory of SQUID structures. I. Topology of SQUID structures—A unified picture
M. Odehnal and V. Petříček Journal of Low Temperature Physics 39 (5-6) 505 (1980) https://doi.org/10.1007/BF00114893
Effect of noise on the performance of rf SQUID magnetometers
D. Brunet-Brunol, D. Pascal and D. Duret Journal of Applied Physics 50 (1) 521 (1979) https://doi.org/10.1063/1.325645
Tunnelling and Negative Resistance Phenomena in Semiconductors
Tunnelling and Negative Resistance Phenomena in Semiconductors 1 (1977) https://doi.org/10.1016/B978-0-08-021044-5.50007-6
Superconductor Applications: SQUIDs and Machines
R. Bruyn Ouboter Superconductor Applications: SQUIDs and Machines 21 (1977) https://doi.org/10.1007/978-1-4684-2805-6_2
Superconductor Applications: SQUIDs and Machines
John Clarke Superconductor Applications: SQUIDs and Machines 67 (1977) https://doi.org/10.1007/978-1-4684-2805-6_3
Granular aluminum SQUID’s
G. Deutscher and R. Rosenbaum Applied Physics Letters 27 (6) 366 (1975) https://doi.org/10.1063/1.88479
A reliable DC squid made with tunnel junctions
J. Clarke, W. Goubau and M. Ketchen IEEE Transactions on Magnetics 11 (2) 724 (1975) https://doi.org/10.1109/TMAG.1975.1058697
Applied Superconductivity
WILLIAM S. GOREE and VICTOR W. HESTERMAN Applied Superconductivity 113 (1975) https://doi.org/10.1016/B978-0-12-517701-6.50008-2
Electronic Properties, Instrumentation, and Measurement
M. Cerdonio, R. H. Wang, G. R. Rossman and J. E. Mercereau Electronic Properties, Instrumentation, and Measurement 525 (1974) https://doi.org/10.1007/978-1-4684-2691-5_88
Solid State Physics
Methods in Experimental Physics, Solid State Physics 11 199 (1974) https://doi.org/10.1016/S0076-695X(08)60178-7
Detection of microwave radiation using thin film superconducting loops containing weak links
M. Nisenoff Revue de Physique Appliquée 9 (1) 65 (1974) https://doi.org/10.1051/rphysap:019740090106500
Josephson Junction Detectors
John Clarke Science 184 (4143) 1235 (1974) https://doi.org/10.1126/science.184.4143.1235
Magnetic susceptibility measurements using a superconducting magnetometer
Edward J. Cukauskas, Daniel A. Vincent and Bascom S. Deaver Review of Scientific Instruments 45 (1) 1 (1974) https://doi.org/10.1063/1.1686418
Experimental determination of optimum operating conditions of a superconducting interferometer
D. Pascal and M. Sauzade Journal of Applied Physics 45 (7) 3085 (1974) https://doi.org/10.1063/1.1663728
Proximity effect bridge and superconducting microcircuitry
H. A. Notarys and J. E. Mercereau Journal of Applied Physics 44 (4) 1821 (1973) https://doi.org/10.1063/1.1662457
The Science and Technology of Superconductivity
Blas Cabrera and W. O. Hamilton The Science and Technology of Superconductivity 587 (1973) https://doi.org/10.1007/978-1-4615-8978-5_7
Low-frequency applications of superconducting quantum interference devices
J. Clarke Proceedings of the IEEE 61 (1) 8 (1973) https://doi.org/10.1109/PROC.1973.8964
The response of RF superconducting quantum interferometers, particularly those containing resistive sections, to magnetic flux modulation
J G Park Journal of Physics F: Metal Physics 3 (6) 1144 (1973) https://doi.org/10.1088/0305-4608/3/6/012
Design and High-Frequency Response of Resistive SQUID Frequency Converters
A. A. Fife and Suso Gygax Journal of Applied Physics 43 (5) 2391 (1972) https://doi.org/10.1063/1.1661509
Earth's field magnetometry
W F Stuart Reports on Progress in Physics 35 (2) 803 (1972) https://doi.org/10.1088/0034-4885/35/2/306
Impedance Matching a Josephson Galvanometer by Means of a Superconducting Transformer
John Clarke, William E. Tennant and D. Woody Journal of Applied Physics 42 (10) 3859 (1971) https://doi.org/10.1063/1.1659697
Indirect Measurement of the Superconducting Pair Density aboveTcinLa3−xGdxIn Due to Thermodynamic Fluctuations
H. E. Hoenig and R. H. Wang Physical Review Letters 27 (13) 850 (1971) https://doi.org/10.1103/PhysRevLett.27.850
Electronics with superconducting junctions
John Clarke Physics Today 24 (8) 30 (1971) https://doi.org/10.1063/1.3022881