Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

High Transition Temperature Superconducting Quantum Interference Devices: Basic Concepts, Fabrication and Applications

Dieter Koelle
Journal of Electroceramics 3 (2) 195 (1999)
https://doi.org/10.1023/A:1009903428803

High-transition-temperature superconducting quantum interference devices

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker and John Clarke
Reviews of Modern Physics 71 (3) 631 (1999)
https://doi.org/10.1103/RevModPhys.71.631

A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux-locked loop and comparison with a conventional analog feedback scheme

P. J. Kung, R. R. Bracht, E. R. Flynn and P. S. Lewis
Review of Scientific Instruments 67 (1) 222 (1996)
https://doi.org/10.1063/1.1146575

SQUID magnetometers for low-frequency applications

Tapani Ryh�nen, Heikki Sepp�, Risto Ilmoniemi and Jukka Knuutila
Journal of Low Temperature Physics 76 (5-6) 287 (1989)
https://doi.org/10.1007/BF00681735

Magnetite Biomineralization and Magnetoreception in Organisms

M. Fuller, W. S. Goree and W. L. Goodman
Topics in Geobiology, Magnetite Biomineralization and Magnetoreception in Organisms 5 103 (1985)
https://doi.org/10.1007/978-1-4613-0313-8_4

Biomagnetic instrumentation

Gian Luca Romani, Samuel J. Williamson and Lloyd Kaufman
Review of Scientific Instruments 53 (12) 1815 (1982)
https://doi.org/10.1063/1.1136907

Some remarks on the theory of SQUID structures. I. Topology of SQUID structures—A unified picture

M. Odehnal and V. Petříček
Journal of Low Temperature Physics 39 (5-6) 505 (1980)
https://doi.org/10.1007/BF00114893

Effect of noise on the performance of rf SQUID magnetometers

D. Brunet-Brunol, D. Pascal and D. Duret
Journal of Applied Physics 50 (1) 521 (1979)
https://doi.org/10.1063/1.325645

Electronic Properties, Instrumentation, and Measurement

M. Cerdonio, R. H. Wang, G. R. Rossman and J. E. Mercereau
Electronic Properties, Instrumentation, and Measurement 525 (1974)
https://doi.org/10.1007/978-1-4684-2691-5_88

Magnetic susceptibility measurements using a superconducting magnetometer

Edward J. Cukauskas, Daniel A. Vincent and Bascom S. Deaver
Review of Scientific Instruments 45 (1) 1 (1974)
https://doi.org/10.1063/1.1686418

Experimental determination of optimum operating conditions of a superconducting interferometer

D. Pascal and M. Sauzade
Journal of Applied Physics 45 (7) 3085 (1974)
https://doi.org/10.1063/1.1663728

Proximity effect bridge and superconducting microcircuitry

H. A. Notarys and J. E. Mercereau
Journal of Applied Physics 44 (4) 1821 (1973)
https://doi.org/10.1063/1.1662457

The response of RF superconducting quantum interferometers, particularly those containing resistive sections, to magnetic flux modulation

J G Park
Journal of Physics F: Metal Physics 3 (6) 1144 (1973)
https://doi.org/10.1088/0305-4608/3/6/012

Design and High-Frequency Response of Resistive SQUID Frequency Converters

A. A. Fife and Suso Gygax
Journal of Applied Physics 43 (5) 2391 (1972)
https://doi.org/10.1063/1.1661509

Impedance Matching a Josephson Galvanometer by Means of a Superconducting Transformer

John Clarke, William E. Tennant and D. Woody
Journal of Applied Physics 42 (10) 3859 (1971)
https://doi.org/10.1063/1.1659697

Indirect Measurement of the Superconducting Pair Density aboveTcinLa3−xGdxIn Due to Thermodynamic Fluctuations

H. E. Hoenig and R. H. Wang
Physical Review Letters 27 (13) 850 (1971)
https://doi.org/10.1103/PhysRevLett.27.850