La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
R. Petit , D. Maystre
Rev. Phys. Appl. (Paris), 7 4 (1972) 427-441
Citations de cet article :
26 articles
Modeling and empirical characterization of the polarization response of off-plane reflection gratings
Hannah Marlowe, Randall L. McEntaffer, James H. Tutt, et al. Applied Optics 55 (21) 5548 (2016) https://doi.org/10.1364/AO.55.005548
Stephen L. O'Dell, Giovanni Pareschi, Hannah Marlowe, Randal L. McEntaffer, Casey T. DeRoo, Drew M. Miles, James H. Tutt, Christian Laubis and Victor Soltwisch 9603 960318 (2015) https://doi.org/10.1117/12.2186344
Reciprocity theorem for Smith-Purcell radiation
O. Haeberlé Optics Communications 141 (5-6) 237 (1997) https://doi.org/10.1016/S0030-4018(97)00269-1
Scattering by one-dimensional random rough metallic surfaces in a conical configuration: several polarizations
R. E. Luna Optics Letters 21 (18) 1418 (1996) https://doi.org/10.1364/OL.21.001418
Scattering by one-dimensional random rough metallic surfaces in a conical configuration
R. E. Luna and E. R. Méndez Optics Letters 20 (7) 657 (1995) https://doi.org/10.1364/OL.20.000657
Calculations of Smith-Purcell radiation generated by electrons of 1–100 MeV
O. Haeberlé, P. Rullhusen, J.-M. Salomé and N. Maene Physical Review E 49 (4) 3340 (1994) https://doi.org/10.1103/PhysRevE.49.3340
Conical diffraction mounting generalization of a rigorous differential method
E Popov and L Mashev Journal of Optics 17 (4) 175 (1986) https://doi.org/10.1088/0150-536X/17/4/002
Progress in Optics
D. Maystre Progress in Optics 21 1 (1984) https://doi.org/10.1016/S0079-6638(08)70121-5
Studies of electron cyclotron emission from high density discharges in the ASDEX Tokamak
D J Campbell and A Eberhagen Plasma Physics and Controlled Fusion 26 (5) 689 (1984) https://doi.org/10.1088/0741-3335/26/5/001
Optimization of Perfectly Conducting Gratings a General Method
A. Roger Optica Acta: International Journal of Optics 30 (3) 387 (1983) https://doi.org/10.1080/713821181
Generalized Reciprocity Relations for Perfectly Conducting Gratings
A. Roger Optica Acta: International Journal of Optics 29 (10) 1427 (1982) https://doi.org/10.1080/713820768
The phase of reflection from a conducting grating
I.H. Hutchinson Optics Communications 39 (1-2) 1 (1981) https://doi.org/10.1016/0030-4018(81)90443-0
Reflection by a grating: Rayleigh methods
P. M. van den Berg Journal of the Optical Society of America 71 (10) 1224 (1981) https://doi.org/10.1364/JOSA.71.001224
Electromagnetic Theory of Gratings
D. Maystre Topics in Current Physics, Electromagnetic Theory of Gratings 22 63 (1980) https://doi.org/10.1007/978-3-642-81500-3_3
Rigorous theory of scattering by perfectly conducting periodic surfaces with trapezoidal height profile TE and TM polarization
G.M. Whitman, D. M. Leskiw and F. Schwering Journal of the Optical Society of America 70 (12) 1495 (1980) https://doi.org/10.1364/JOSA.70.001495
Inverse scattering method in electromagnetic optics: Application to diffraction gratings
A. Roger and D. Maystre Journal of the Optical Society of America 70 (12) 1483 (1980) https://doi.org/10.1364/JOSA.70.001483
Grating profile optimizations by inverse scattering methods
A. Roger Optics Communications 32 (1) 11 (1980) https://doi.org/10.1016/0030-4018(80)90303-X
On an asymptotic theory of diffraction gratings used in the scalar domain
Erwin G. Loewen, Michel Nevière and Daniel Maystre Journal of the Optical Society of America 68 (4) 496 (1978) https://doi.org/10.1364/JOSA.68.000496
X-ray efficiencies of gratings
M. Neviere, P. Vincent and D. Maystre Applied Optics 17 (6) 843 (1978) https://doi.org/10.1364/AO.17.000843
Computation of the efficiencies and polarization effects of XUV gratings used in classical and conical mountings
Patrick Vincent, Michel Neviere and Daniel Maystre Nuclear Instruments and Methods 152 (1) 123 (1978) https://doi.org/10.1016/0029-554X(78)90249-5
On the use of classical and conical diffraction mountings for xuv gratings
M. Neviere, D. Maystre and W. R. Hunter Journal of the Optical Society of America 68 (8) 1106 (1978) https://doi.org/10.1364/JOSA.68.001106
Some studies on the behaviour of surface impedance in the vicinity of gratings
M. Neviere, P. Vincent and P. Petit Optics Communications 21 (3) 369 (1977) https://doi.org/10.1016/0030-4018(77)90041-4
Electromagnetic grating theories: Limitations and successes
R Petit Nouvelle Revue d'Optique 6 (3) 129 (1975) https://doi.org/10.1088/0335-7368/6/3/301
Diffraction gratings (manufacture)
E W Palmer, M C Hutley, A Franks, J F Verrill and B Gale Reports on Progress in Physics 38 (8) 975 (1975) https://doi.org/10.1088/0034-4885/38/8/002
Analytic Constraints on Electromagnetic Field Computations
R.H. T.Bates IEEE Transactions on Microwave Theory and Techniques 23 (8) 605 (1975) https://doi.org/10.1109/TMTT.1975.1128639
Blaze optimization for sinusoidal profile gratings
R.C. McPhedran, I.J. Wilson and M.D. Waterworth Optics Communications 7 (4) 331 (1973) https://doi.org/10.1016/0030-4018(73)90046-1