La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Ph. Grenier
Rev. Phys. Appl. (Paris), 14 1 (1979) 87-90
Citations de cet article :
63 articles
Progress in passive daytime radiative cooling from spectral design to real application
Zhuojing Zhao, Siming Zhao, Jiaqi Xu, Xueke Wu, Zhenyu Guo, Ya Huang and Rufan Zhang Carbon Future 2 (1) 9200033 (2025) https://doi.org/10.26599/CF.2025.9200033
Radiative cooling applications toward enhanced energy efficiency: System designs, achievements, and perspectives
Hao Chen, Xiangjun Liu, Jingchong Liu, Fuqiang Wang and Cunhai Wang The Innovation 100999 (2025) https://doi.org/10.1016/j.xinn.2025.100999
Design strategies, manufacturing, and applications of radiative cooling technologies
Joonho Kang, Changkyun Lee, Haejun Chung and Peter Bermel Nanophotonics (2025) https://doi.org/10.1515/nanoph-2025-0159
Materials in Radiative Cooling Technologies
Rong Liu, Shancheng Wang, Zhengui Zhou, Keyi Zhang, Guanya Wang, Changyuan Chen and Yi Long Advanced Materials 37 (2) (2025) https://doi.org/10.1002/adma.202401577
Radiative cooling and thermoregulation in the earth’s glow
Jyotirmoy Mandal, Jyothis Anand, Sagar Mandal, John Brewer, Arvind Ramachandran and Aaswath P. Raman Cell Reports Physical Science 5 (7) 102065 (2024) https://doi.org/10.1016/j.xcrp.2024.102065
Radiative coatings for solar cell cooling: Materials, and applications
Ali Alshammari, Eydhah Almatrafi and Mohamed Rady Solar Energy 273 112545 (2024) https://doi.org/10.1016/j.solener.2024.112545
Solution‐Processed Disordered Plasmonic Surfaces as Optics for Infrared Imaging
Jyotirmoy Mandal, John Brewer, Sagar Mandal, Robert Yang and Aaswath P. Raman Laser & Photonics Reviews 18 (9) (2024) https://doi.org/10.1002/lpor.202400256
Polymeric coatings for passive radiative cooling of PV modules in hot and humid weather: Design, optimization, and performance evaluation
Ali A. Alshammari, Elias M. Salilih, Eydhah Almatrafi and Mohamed Rady Case Studies in Thermal Engineering 57 104341 (2024) https://doi.org/10.1016/j.csite.2024.104341
Urban Climate Change and Heat Islands
Jie Feng, Shamila Haddad, Kai Gao, et al. Urban Climate Change and Heat Islands 227 (2023) https://doi.org/10.1016/B978-0-12-818977-1.00006-5
Effect of electronic and phonon properties on polar dielectric embedded polymer-based radiative cooling materials
Bingyang Wu, Kai Zhang, Peiliang Ye, Ziyun Niu and Ge Song Solar Energy Materials and Solar Cells 260 112473 (2023) https://doi.org/10.1016/j.solmat.2023.112473
Realization of an efficient radiative cooling emitter with double layer inorganic SiO2 and TiO2 metamaterial
Huaiyuan Yin and Chunzhen Fan Results in Physics 45 106216 (2023) https://doi.org/10.1016/j.rinp.2023.106216
Increasing Solar Reflectivity of Building Envelope Materials to Mitigate Urban Heat Islands: State-of-the-Art Review
Bahador Ziaeemehr, Zahra Jandaghian, Hua Ge, Michael Lacasse and Travis Moore Buildings 13 (11) 2868 (2023) https://doi.org/10.3390/buildings13112868
Scalable and High-Performance Radiative Cooling Fabrics through an Electrospinning Method
Yunlong Zhang and Jie Yu ACS Applied Materials & Interfaces 14 (40) 45707 (2022) https://doi.org/10.1021/acsami.2c13727
Electronic and phononic origins of BaSO4 as an ultra-efficient radiative cooling paint pigment
Z. Tong, J. Peoples, X. Li, X. Yang, H. Bao and X. Ruan Materials Today Physics 24 100658 (2022) https://doi.org/10.1016/j.mtphys.2022.100658
Infrared Radiative Cooling and Its Applications
Zhiyu Hu and Erzhen Mu Energy and Environment Research in China, Infrared Radiative Cooling and Its Applications 75 (2022) https://doi.org/10.1007/978-981-19-6609-5_4
Infrared Radiative Cooling and Its Applications
Zhiyu Hu and Erzhen Mu Energy and Environment Research in China, Infrared Radiative Cooling and Its Applications 33 (2022) https://doi.org/10.1007/978-981-19-6609-5_3
Emerging radiative materials and prospective applications of radiative sky cooling - A review
Abdul Samad Farooq, Peng Zhang, Yongfeng Gao and Raza Gulfam Renewable and Sustainable Energy Reviews 144 110910 (2021) https://doi.org/10.1016/j.rser.2021.110910
Effective radiative cooling with ZrO2/PDMS reflective coating
Yubo Zhang, Xinyu Tan, Guiguang Qi, et al. Solar Energy Materials and Solar Cells 229 111129 (2021) https://doi.org/10.1016/j.solmat.2021.111129
A flexible and scalable solution for daytime passive radiative cooling using polymer sheets
Kaixin Lin, Luke Chao, Tsz Chung Ho, et al. Energy and Buildings 252 111400 (2021) https://doi.org/10.1016/j.enbuild.2021.111400
Polymer solar filter for enabling direct daytime radiative cooling
Erik Torgerson and Josh Hellhake Solar Energy Materials and Solar Cells 206 110319 (2020) https://doi.org/10.1016/j.solmat.2019.110319
Systematical analysis of ideal absorptivity for passive radiative cooling
Yulian Li, Linzhi Li, Li Guo and Bowen An Optical Materials Express 10 (8) 1767 (2020) https://doi.org/10.1364/OME.10.001767
Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling
Yue Yang, Linshuang Long, Sheng Meng, et al. Solar Energy Materials and Solar Cells 211 110548 (2020) https://doi.org/10.1016/j.solmat.2020.110548
Systematical analysis of ideal absorptivity for passive radiative cooling
Yulian Li, Linzhi Li, Li Guo and Bowen An Optical Materials Express 10 (8) 1767 (2020) https://doi.org/10.1364/OME.397617
Nighttime Photovoltaic Cells: Electrical Power Generation by Optically Coupling with Deep Space
Tristan Deppe and Jeremy N. Munday ACS Photonics 7 (1) 1 (2020) https://doi.org/10.1021/acsphotonics.9b00679
Modeling and optimization of radiative cooling based thermoelectric generators
Bin Zhao, Gang Pei and Aaswath P. Raman Applied Physics Letters 117 (16) (2020) https://doi.org/10.1063/5.0022667
Self-adaptive radiative cooling and solar heating based on a compound metasurface
Wanlin Wang, Zhongping Zhao, Qixuan Zou, et al. Journal of Materials Chemistry C 8 (9) 3192 (2020) https://doi.org/10.1039/C9TC05634C
Fundamentals, Materials, and Applications for Daytime Radiative Cooling
Zizhong Li, Qiyuan Chen, Yan Song, Bin Zhu and Jia Zhu Advanced Materials Technologies 5 (5) (2020) https://doi.org/10.1002/admt.201901007
Development of radiative cooling and its integration with buildings: A comprehensive review
Jianheng Chen and Lin Lu Solar Energy 212 125 (2020) https://doi.org/10.1016/j.solener.2020.10.013
Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling
Sheng Meng, Linshuang Long, Zuoxu Wu, et al. Solar Energy Materials and Solar Cells 208 110393 (2020) https://doi.org/10.1016/j.solmat.2020.110393
Radiative cooling: A review of fundamentals, materials, applications, and prospects
Bin Zhao, Mingke Hu, Xianze Ao, Nuo Chen and Gang Pei Applied Energy 236 489 (2019) https://doi.org/10.1016/j.apenergy.2018.12.018
Performance evaluation of daytime radiative cooling under different clear sky conditions
Bin Zhao, Mingke Hu, Xianze Ao and Gang Pei Applied Thermal Engineering 155 660 (2019) https://doi.org/10.1016/j.applthermaleng.2019.04.028
Highly effective photon-to-cooling thermal device
Yanpei Tian, Lijuan Qian, Xiaojie Liu, et al. Scientific Reports 9 (1) (2019) https://doi.org/10.1038/s41598-019-55546-4
Radiative cooling for low-bandgap photovoltaics under concentrated sunlight
Zhiguang Zhou, Ze Wang and Peter Bermel Optics Express 27 (8) A404 (2019) https://doi.org/10.1364/OE.27.00A404
Radiative sky cooling: Fundamental principles, materials, and applications
Dongliang Zhao, Ablimit Aili, Yao Zhai, et al. Applied Physics Reviews 6 (2) (2019) https://doi.org/10.1063/1.5087281
A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
Mehdi Zeyghami, D. Yogi Goswami and Elias Stefanakos Solar Energy Materials and Solar Cells 178 115 (2018) https://doi.org/10.1016/j.solmat.2018.01.015
Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future?
Mattheos Santamouris and Jie Feng Buildings 8 (12) 168 (2018) https://doi.org/10.3390/buildings8120168
Dynamic optical response of SU-8 upon UV treatment
Alok Ghanekar, Matthew Ricci, Yanpei Tian, Otto Gregory and Yi Zheng Optical Materials Express 8 (7) 2017 (2018) https://doi.org/10.1364/OME.8.002017
Metal-dielectric hybrid structure for radiative cooling
C M Liu, N Z Hu, Q Li and M Qiu Journal of Physics: Conference Series 1077 012003 (2018) https://doi.org/10.1088/1742-6596/1077/1/012003
Radiative cooling as low-grade energy source: A literature review
Sergi Vall and Albert Castell Renewable and Sustainable Energy Reviews 77 803 (2017) https://doi.org/10.1016/j.rser.2017.04.010
Radiative sky cooling: fundamental physics, materials, structures, and applications
Xingshu Sun, Yubo Sun, Zhiguang Zhou, Muhammad Ashraful Alam and Peter Bermel Nanophotonics 6 (5) 997 (2017) https://doi.org/10.1515/nanoph-2017-0020
Infrared dielectric function of polydimethylsiloxane and selective emission behavior
Arvind Srinivasan, Braden Czapla, Jeff Mayo and Arvind Narayanaswamy Applied Physics Letters 109 (6) (2016) https://doi.org/10.1063/1.4961051
Radiative Cooling: Principles, Progress, and Potentials
Md. Muntasir Hossain and Min Gu Advanced Science 3 (7) (2016) https://doi.org/10.1002/advs.201500360
Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?
Tingzhen Ming, Renaud de_Richter, Wei Liu and Sylvain Caillol Renewable and Sustainable Energy Reviews 31 792 (2014) https://doi.org/10.1016/j.rser.2013.12.032
TiO2 Nanocrystalline Pigmented Polyethylene Foils for Radiative Cooling Applications: Synthesis and Characterization
Y. Mastai, Y. Diamant, S. T. Aruna and A. Zaban Langmuir 17 (22) 7118 (2001) https://doi.org/10.1021/la010370g
Deposition of tellurium films by decomposition of electrochemically-generated H2Te: application to radiative cooling devices
T Engelhard, E.D Jones, I Viney, Y Mastai and G Hodes Thin Solid Films 370 (1-2) 101 (2000) https://doi.org/10.1016/S0040-6090(00)00942-1
Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils
Torbjörn M.J. Nilsson and Gunnar A. Niklasson Solar Energy Materials and Solar Cells 37 (1) 93 (1995) https://doi.org/10.1016/0927-0248(94)00200-2
Characterization of silicon oxynitride multilayered systems for passive radiative cooling application
MD Diatezua, PA Thiry and R Caudano Vacuum 46 (8-10) 1121 (1995) https://doi.org/10.1016/0042-207X(95)00120-4
Silicon oxinitride and aluminum films interface: Rutherford backscattering and high resolution electron-energy-loss spectroscopic studies
M.D. Diatezua, P.A. Thiry, G. Terwagne and R. Caudano Surface Science 269-270 1054 (1992) https://doi.org/10.1016/0039-6028(92)91392-O
POTENTIAL OF RADIATIVE COOLING IN SOUTHERN EUROPE
A. ARGIRIOU, M. SANTAMOURIS, C. BALARAS and S. JETER International Journal of Solar Energy 13 (3) 189 (1992) https://doi.org/10.1080/01425919208909784
Materials Science for Solar Energy Conversion Systems
C.G. Granqvist and T.S. Eriksson Materials Science for Solar Energy Conversion Systems 168 (1991) https://doi.org/10.1016/B978-0-08-040937-5.50010-3
Determination of Optical Constants of Polymer Films Using a Fourier Transform Infrared Reflection Method; Polyethylene Terephthalate (PET)
C. A. Sergides, A. R. Chughtai and D. M. Smith Applied Spectroscopy 41 (1) 154 (1987) https://doi.org/10.1366/0003702874867954
Evacuated-tube directional-radiating cooling system
John R. Hull and William W. Schertz Solar Energy 35 (5) 429 (1985) https://doi.org/10.1016/0038-092X(85)90132-X
Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils
N.A. Nilsson, T.S. Eriksson and C.G. Granqvist Solar Energy Materials 12 (5) 327 (1985) https://doi.org/10.1016/0165-1633(85)90002-4
Materials for radiative cooling to low temperature
T.S. Eriksson, E.M. Lushiku and C.G. Granqvist Solar Energy Materials 11 (3) 149 (1984) https://doi.org/10.1016/0165-1633(84)90067-4
Radiative cooling with selectively infrared-emitting gases
Elias M. Lushiku and Claes-Goran Granqvist Applied Optics 23 (11) 1835 (1984) https://doi.org/10.1364/AO.23.001835
Thermal performance of radiative cooling panels
P. Berdahl, M. Martin and F. Sakkal International Journal of Heat and Mass Transfer 26 (6) 871 (1983) https://doi.org/10.1016/S0017-9310(83)80111-2
Radiative cooling computed for model atmospheres
T. S. Eriksson and C. G. Granqvist Applied Optics 21 (23) 4381 (1982) https://doi.org/10.1364/AO.21.004381
Radiative cooling with selectively infrared-emitting ammonia gas
E. M. Lushiku, A. Hjortsberg and C. G. Granqvist Journal of Applied Physics 53 (8) 5526 (1982) https://doi.org/10.1063/1.331487
Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films
C. G. Granqvist and A. Hjortsberg Journal of Applied Physics 52 (6) 4205 (1981) https://doi.org/10.1063/1.329270
Radiative heating and cooling with spectrally selective surfaces
C. G. Granqvist Applied Optics 20 (15) 2606 (1981) https://doi.org/10.1364/AO.20.002606
Radiative cooling with selectively emitting ethylene gas
A. Hjortsberg and C. G. Granqvist Applied Physics Letters 39 (6) 507 (1981) https://doi.org/10.1063/1.92783
Letter to the editor
C.G. Granqvist and A. Hjortsberg Solar Energy 24 (2) 216 (1980) https://doi.org/10.1016/0038-092X(80)90397-7
Surfaces for radiative cooling: Silicon monoxide films on aluminum
C. G. Granqvist and A. Hjortsberg Applied Physics Letters 36 (2) 139 (1980) https://doi.org/10.1063/1.91406