Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Impact of particle size on the structural and smagnetic properties of superparamagnetic Li-ferrite nanoparticles

J. Massoudi, M. Smari, K. Khirouni, E. Dhahri and L. Bessais
Journal of Magnetism and Magnetic Materials 528 167806 (2021)
https://doi.org/10.1016/j.jmmm.2021.167806

Structural, elastic, optical and dielectric properties of Li0.5Fe2.5 O4 nanopowders with different particle sizes

Jalel Massoudi, Dhouha Bouekkeze, Amira Bougoffa, et al.
Advanced Powder Technology 31 (12) 4714 (2020)
https://doi.org/10.1016/j.apt.2020.11.005

Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties

R.H. Kadam, Suresh T. Alone, Maheshkumar L. Mane, A.R. Biradar and Sagar E. Shirsath
Journal of Magnetism and Magnetic Materials 355 70 (2014)
https://doi.org/10.1016/j.jmmm.2013.11.054

Combustion synthesis of Co2+ substituted Li0.5Cr0.5Fe2O4 nano-powder: Physical and magnetic interactions

M.V. Chaudhari, R.H. Kadam, S.B. Shelke, et al.
Powder Technology 259 14 (2014)
https://doi.org/10.1016/j.powtec.2014.03.053

Low temperature synthesis of Li0.5ZrxCoxFe2.5−2xO4 powder and their characterizations

S.K. Gurav, Sagar E. Shirsath, R.H. Kadam and D.R. Mane
Powder Technology 235 485 (2013)
https://doi.org/10.1016/j.powtec.2012.11.009

Structural and Magnetic Properties of Mn$^{3+}$ Substituted Ordered and Disordered Li$_{0.5}$Cr$_{0.5}$Fe$_{2}$O$_{4}$ Nanoparticles

Sagar E. Shirsath, Mahesh L. Mane, Ali Ghasemi, et al.
IEEE Transactions on Magnetics 49 (7) 4210 (2013)
https://doi.org/10.1109/TMAG.2013.2245634

Sol-gel auto-combustion synthesis of Li3xMnFe2−xO4 and their characterizations

R. H. Kadam, A. R. Biradar, M. L. Mane and Sagar E. Shirsath
Journal of Applied Physics 112 (4) (2012)
https://doi.org/10.1063/1.4746746

Sol–gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: Cation distribution, structural and magnetic properties

D.R. Mane, Swati Patil, D.D. Birajdar, et al.
Materials Chemistry and Physics 126 (3) 755 (2011)
https://doi.org/10.1016/j.matchemphys.2010.12.048

Effects of Nd:YAG laser irradiation on structural and magnetic properties of Li0.5Fe2.5O4

Maheshkumar L. Mane, R. Sundar, K. Ranganathan, S.M. Oak and K.M. Jadhav
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 (4) 466 (2011)
https://doi.org/10.1016/j.nimb.2010.12.039

Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4

Sagar E. Shirsath, R.H. Kadam, Anil S. Gaikwad, Ali Ghasemi and Akimitsu Morisako
Journal of Magnetism and Magnetic Materials 323 (23) 3104 (2011)
https://doi.org/10.1016/j.jmmm.2011.06.065

Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles

Nataša G. Jović, Ahmad S. Masadeh, Aleksandar S. Kremenović, et al.
The Journal of Physical Chemistry C 113 (48) 20559 (2009)
https://doi.org/10.1021/jp907559y

On the magnetic compensation effect of lithium‐chromium ferrites Li0.5CrxFe2.5–xO4 (0 ≤ x ≤ 1.55)

A. Rais, A. M. Gismelseed and I. A. Al‐Omari
physica status solidi (b) 242 (14) 2949 (2005)
https://doi.org/10.1002/pssb.200541085

A magnetic and Mössbauer spectral study of SmFe11Ti, LuFe11Ti, and their respective hydrides

Cristina Piquer, Fernande Grandjean, Gary J. Long and Olivier Isnard
Journal of Alloys and Compounds 388 (1) 6 (2005)
https://doi.org/10.1016/j.jallcom.2004.06.073

A magnetic and Mössbauer spectral study of the spin reorientation in NdFe11Ti and NdFe11TiH

Cristina Piquer, Fernande Grandjean, Olivier Isnard, Viorel Pop and Gary J. Long
Journal of Applied Physics 95 (11) 6308 (2004)
https://doi.org/10.1063/1.1736333

Effect of Mg2+ on the Magnetic Compensation of Lithium–Chromium Ferrite

A. Rais, A. A. Yousif, A. Gismelseed, M. E. Elzain, A. Al Rawas and I. A. Al-Omari
Hyperfine Interactions 156-157 (1-4) 229 (2004)
https://doi.org/10.1023/B:HYPE.0000043218.24309.6b

A magnetic and Mössbauer spectral study of PrFe11Ti and PrFe11TiH

Cristina Piquer, Fernande Grandjean, Olivier Isnard, Viorel Pop and Gary J. Long
Journal of Alloys and Compounds 377 (1-2) 1 (2004)
https://doi.org/10.1016/j.jallcom.2004.01.028

Magnetic and Mössbauer spectral study of ErFe11Ti and ErFe11TiH

Cristina Piquer, Raphaël P. Hermann, Fernande Grandjean, Gary J. Long and Olivier Isnard
Journal of Applied Physics 93 (6) 3414 (2003)
https://doi.org/10.1063/1.1544087

Magnetic and Mössbauer spectral properties of DyFe11Ti and DyFe11TiH

Cristina Piquer, Olivier Isnard, Fernande Grandjean and Gary J Long
Journal of Magnetism and Magnetic Materials 265 (2) 156 (2003)
https://doi.org/10.1016/S0304-8853(03)00245-2

A magnetic and Mössbauer spectral study of TbFe11Ti and TbFe11TiH

Cristina Piquer, Raphaël P Hermann, Fernande Grandjean, Olivier Isnard and Gary J Long
Journal of Physics: Condensed Matter 15 (43) 7395 (2003)
https://doi.org/10.1088/0953-8984/15/43/021

A magnetic and Mössbauer spectral study of HoFe11Ti and HoFe11TiH

Cristina Piquer, Fernande Grandjean, Gary J. Long and Olivier Isnard
Journal of Alloys and Compounds 353 (1-2) 33 (2003)
https://doi.org/10.1016/S0925-8388(02)01204-5

A Mössbauer spectral study of GdFe11Ti and GdFe11TiD

Cristina Piquer, Olivier Isnard, Fernande Grandjean and Gary J. Long
Journal of Magnetism and Magnetic Materials 263 (1-2) 235 (2003)
https://doi.org/10.1016/S0304-8853(02)01570-6

A Mössbauer spectral study of CeFe11Ti and CeFe11TiH

Gary J Long, Dimitri Hautot, F Grandjean, O Isnard and S Miraglia
Journal of Magnetism and Magnetic Materials 202 (1) 100 (1999)
https://doi.org/10.1016/S0304-8853(98)01070-1

Combustion synthesis of chromium-substituted lithium ferrites Li0.5Fe2.5−xCrxO4 (x≤2.0): Rietveld analysis and magnetic measurements

Luis Fernández-Barquı́n, Maxim V. Kuznetsov, Yuri G. Morozov, Quentin A. Pankhurst and Ivan P. Parkin
International Journal of Inorganic Materials 1 (5-6) 311 (1999)
https://doi.org/10.1016/S1466-6049(99)00045-8

Self-propagating high-temperature synthesis of lithium-chromium ferrites Li0.5Fe2.5-xCrxO4

Maxim V Kuznetsov, Quentin A Pankhurst and Ivan P Parkin
Journal of Physics D: Applied Physics 31 (20) 2886 (1998)
https://doi.org/10.1088/0022-3727/31/20/024

Cation Distribution in Ordered Spinels of the Li2O–TiO2–Fe2O3System

S. Scharner, W. Weppner and P. Schmid-Beurmann
Journal of Solid State Chemistry 134 (1) 170 (1997)
https://doi.org/10.1006/jssc.1997.7572

The Influence of Cation Substitution on the Magnetic Behaviour of Magnesium Ferrite

M. Fayek, M. Elnimr, N. Nada, H. Saleh and Y. Eid
Annalen der Physik 501 (4) 247 (1989)
https://doi.org/10.1002/andp.19895010403

Neutron diffraction studies of 0.2 titanium substituted lithium ferrite

S. Ligenza, B. Paluchowska and M. Konwicki
Physica Status Solidi (a) 106 (1) K71 (1988)
https://doi.org/10.1002/pssa.2211060151

Hyperfine field and relaxation effect in Li−Zn−Ti ferrites

J. S. Baijal, P. Sumitra, Deepika Kothari, Chandra Prakash and Pran Kishan
Hyperfine Interactions 35 (1-4) 879 (1987)
https://doi.org/10.1007/BF02394514

Antiferromagnetic 6L-hexagonal ferrites, Ba2Sb2MII3Fe8O22 (M = Zn, Mg, Ni, Co)

G. Fuchs, N. Nguyen, J.M. Greneche, D. Groult and B. Raveau
Journal of Solid State Chemistry 61 (2) 223 (1986)
https://doi.org/10.1016/0022-4596(86)90025-3

Hyperfine field in Li-Zn-Ti ferrites

Chandra Prakash, S. Phanjoubam, J. S. Baijal and Pran Kishan
Hyperfine Interactions 28 (1-4) 511 (1986)
https://doi.org/10.1007/BF02061499

Mössbauer effect study of Li 2 1+ Me4+Fe 6 3+ O 12 2− spinels

H. Saleh, M. Elnimr, N. Nada and M. Fayek
Hyperfine Interactions 28 (1-4) 627 (1986)
https://doi.org/10.1007/BF02061526

M�ssbauer studies of Li0.5Fe2.5-xGaxO4 system: canted spin alignment and cation distribution

S. K. Kulshreshtha and G. Ritter
Journal of Materials Science 20 (11) 3926 (1985)
https://doi.org/10.1007/BF00552381

Contribution de la spectrometrie mössbauer et de la spectrometrie d'absorption X A l'etude de la non-stoechiometrie de CuFe2O4

B. Hannoyer, M. Lenglet, R. Chopova and J.C. Tellier
Materials Chemistry and Physics 13 (5) 449 (1985)
https://doi.org/10.1016/0254-0584(85)90017-3

Mössbauer spectroscopy on the double substituted lithium ferrite Li[Fe0.9(AlxGa1−x)0.1]5O8

P.H. Domingues, J.M. Neto and F. de Souza Barros
Solid State Communications 53 (10) 891 (1985)
https://doi.org/10.1016/0038-1098(85)90074-2

Mössbauer Studies on Hyperfine Interactions in Titanium Substituted Lithium Ferrites

Pran Kishan, Chandra Prakash, J. S. Baijal and K. K. Laroia
Physica Status Solidi (a) 84 (2) 535 (1984)
https://doi.org/10.1002/pssa.2210840224

Cation Ordering in LiFe5O8 Studied by Mössbauer Spectroscopy and X-Ray Crystallography

J. L. Dormann, A. Tomas and M. Nogues
Physica Status Solidi (a) 77 (2) 611 (1983)
https://doi.org/10.1002/pssa.2210770225

Mossbauer study of hyperfine field distributions and spin canting in lithium-zinc ferrites

M. Rosenberg, P. Deppe, S. Dey, et al.
IEEE Transactions on Magnetics 18 (6) 1616 (1982)
https://doi.org/10.1109/TMAG.1982.1062055