Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Challenges and Opportunities in the Use of Iron Photosensitizers for Dye‐Sensitized Solar Cells and Photoelectrosynthetic Cells Applications

Lakshmi Narayan Satheesh, Katerina Achilleos, Abdullah M. Abudayyeh and Ludovic Troian‐Gautier
EcoEnergy (2025)
https://doi.org/10.1002/ece2.70001

Intelligent Techniques and Applications in Science and Technology

Paramita Sarkar and Abhijit Sinha
Learning and Analytics in Intelligent Systems, Intelligent Techniques and Applications in Science and Technology 12 228 (2020)
https://doi.org/10.1007/978-3-030-42363-6_27

Solar Redox Flow Batteries: Mechanism, Design, and Measurement

Liuyue Cao, Maria Skyllas‐Kazacos and Da‐Wei Wang
Advanced Sustainable Systems 2 (8-9) (2018)
https://doi.org/10.1002/adsu.201800031

Counter electrodes in dye-sensitized solar cells

Jihuai Wu, Zhang Lan, Jianming Lin, et al.
Chemical Society Reviews 46 (19) 5975 (2017)
https://doi.org/10.1039/C6CS00752J

Organic dyes containing fluorenylidene functionalized phenothiazine donors as sensitizers for dye sensitized solar cells

Ankita Saini, K. R. Justin Thomas, Chun-Ting Li and Kuo-Chuan Ho
Journal of Materials Science: Materials in Electronics 27 (12) 12392 (2016)
https://doi.org/10.1007/s10854-016-5146-5

Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials

Imran Shakir, Zahid Ali, Usman Ali Rana, et al.
Advances in Chemical and Materials Engineering, Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials 376 (2014)
https://doi.org/10.4018/978-1-4666-5824-0.ch015

Photocurrent Enhancement by Multilayered Porphyrin Sensitizers in a Photoelectrochemical Cell

Peter K. B. Palomaki, Marissa R. Civic and Peter H. Dinolfo
ACS Applied Materials & Interfaces 5 (15) 7604 (2013)
https://doi.org/10.1021/am401923f

Electrochemical Technologies for Energy Storage and Conversion

Aung Ko Ko Kyaw, Ming Fei Yang and Xiao Wei Sun
Electrochemical Technologies for Energy Storage and Conversion 463 (2011)
https://doi.org/10.1002/9783527639496.ch11

Dye-Sensitized Solar Cells

Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo and Henrik Pettersson
Chemical Reviews 110 (11) 6595 (2010)
https://doi.org/10.1021/cr900356p

Nanocomposite solar cells: the requirement and challenge of kinetic charge separation

Helmut Tributsch
Journal of Solid State Electrochemistry 13 (7) 1127 (2009)
https://doi.org/10.1007/s10008-008-0668-2

The Function of TiO2 with Respect to Sensitizer Stability in Nanocrystalline Dye Solar Cells

A. Barkschat, T. Moehl, B. Macht, H. Tributsch and M. Sabry Abdel-Mottaleb
International Journal of Photoenergy 2008 (1) (2008)
https://doi.org/10.1155/2008/814951

Use of Fluoroscein-EDTA System in Photogalvanic Cell for Solar Energy Conversion

S. Madhwani, R. Ameta, J. Vardia, P. B. Punjabi and V. K. Sharma
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (8) 721 (2007)
https://doi.org/10.1080/00908310500280926

Optical simulation of transmittance into a nanocrystalline anatase TiO2 film for solar cell applications

Yasuhiro Tachibana, Hitomi Y. Akiyama and Susumu Kuwabata
Solar Energy Materials and Solar Cells 91 (2-3) 201 (2007)
https://doi.org/10.1016/j.solmat.2006.09.001

Photoelectrochemical Cell Based on Mixed Dye-Sensitized Nanocrystalline ZnO Thin Film Electrodes in Acetonitrile Medium

Lal Bahadur and Pankaj Srivastava
Journal of The Electrochemical Society 151 (11) G740 (2004)
https://doi.org/10.1149/1.1802496

Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes

Kazuhiro Sayama, Shingo Tsukagoshi, Tohru Mori, et al.
Solar Energy Materials and Solar Cells 80 (1) 47 (2003)
https://doi.org/10.1016/S0927-0248(03)00113-2

Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques

B. Macht, M. Turrión, A. Barkschat, et al.
Solar Energy Materials and Solar Cells 73 (2) 163 (2002)
https://doi.org/10.1016/S0927-0248(01)00121-0

Nanostructured ZnO electrodes for dye-sensitized solar cell applications

K. Keis, C. Bauer, G. Boschloo, et al.
Journal of Photochemistry and Photobiology A: Chemistry 148 (1-3) 57 (2002)
https://doi.org/10.1016/S1010-6030(02)00039-4

Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells

Yasuhiro Tachibana, Kohjiro Hara, Kazuhiro Sayama and Hironori Arakawa
Chemistry of Materials 14 (6) 2527 (2002)
https://doi.org/10.1021/cm011563s

A binary mixture of dyes (2-imidazolin-5-oneand Rose Bengal) for photosensitization of n-ZnO thin film electrodes in aqueous and acetonitrile media

L. Bahadur and L. Roy
Journal of Applied Electrochemistry 29 (1) 109 (1999)
https://doi.org/10.1023/A:1003473116474

Mechanisms of Instability in Ru-Based Dye Sensitization Solar Cells

R. Grünwald and H. Tributsch
The Journal of Physical Chemistry B 101 (14) 2564 (1997)
https://doi.org/10.1021/jp9624919

Extension of the spectral response of sprayed ZnO thin film electrodes induced by nickel and cobalt doping

L Bahadur, T N Rao and J P Pandey
Semiconductor Science and Technology 9 (3) 275 (1994)
https://doi.org/10.1088/0268-1242/9/3/007

Progress in Inorganic Chemistry

Ming X. Tan, Paul E Laibinis, Sonbinh T. Nguyen, et al.
Progress in Inorganic Chemistry, Progress in Inorganic Chemistry 41 21 (1994)
https://doi.org/10.1002/9780470166420.ch2

Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties

S. Kohtani, A. Kudo and T. Sakata
Chemical Physics Letters 206 (1-4) 166 (1993)
https://doi.org/10.1016/0009-2614(93)85535-V

Dye sensitization of low-bandgap semiconductor electrodes: cuprous oxide photocathode sensitized with methyl violet

K Tennakone, A R Kumarasinghe and P M Sirimanne
Semiconductor Science and Technology 8 (8) 1557 (1993)
https://doi.org/10.1088/0268-1242/8/8/011

Spectral sensitization of sprayed thin filmn-ZnO electrodes by 4-p-dimethylaminobenzylidene-1,2-diphenyl-2-imidazoline-5-one in acetonitrile solution

Lal Bahadur and J. P. Pandey
Journal of Applied Electrochemistry 22 (9) 883 (1992)
https://doi.org/10.1007/BF01023734

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

Brian O'Regan and Michael Grätzel
Nature 353 (6346) 737 (1991)
https://doi.org/10.1038/353737a0

Studies on semiconducting thin films prepared by the spray pyrolysis technique for photoelectrochemical solar cell applications: Preparation and properties of ZnO

L. Bahadur, M. Hamdani, J.F. Koenig and P. Chartier
Solar Energy Materials 14 (2) 107 (1986)
https://doi.org/10.1016/0165-1633(86)90069-9

Semiconductor based photoelectrochemical cells for solar energy conversion—An overview

A Aruchamy, G Aravamudan and G V Subba Rao
Bulletin of Materials Science 4 (5) 483 (1982)
https://doi.org/10.1007/BF02824960

Photoelectrochemistry of Ru(bpy)32+ in Basic Medium at SnO2 and Metal Electrodes

A. Kirsch‐De Mesmaeker, J. Nasielski and R. Willem
Bulletin des Sociétés Chimiques Belges 91 (9) 731 (1982)
https://doi.org/10.1002/bscb.19820910902